1 Star 0 Fork 0

theta405/iverilog

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
GPL-2.0
THE ICARUS VERILOG COMPILATION SYSTEM
		Copyright 2000-2019 Stephen Williams


1.0 What is ICARUS Verilog?

Icarus Verilog is intended to compile ALL of the Verilog HDL as
described in the IEEE-1364 standard. Of course, it's not quite there
yet. It does currently handle a mix of structural and behavioural
constructs. For a view of the current state of Icarus Verilog, see its
home page at <http://iverilog.icarus.com/>.

Icarus Verilog is not aimed at being a simulator in the traditional
sense, but a compiler that generates code employed by back-end
tools.

    For instructions on how to run Icarus Verilog,
    see the ``iverilog'' man page.


2.0 Building/Installing Icarus Verilog From Source

If you are starting from the source, the build process is designed to be
as simple as practical. Someone basically familiar with the target
system and C/C++ compilation should be able to build the source
distribution with little effort. Some actual programming skills are
not required, but helpful in case of problems.

If you are building on Windows, see the mingw.txt file.

2.1 Compile Time Prerequisites

You need the following software to compile Icarus Verilog from source
on a UNIX-like system:

	- GNU Make
	  The Makefiles use some GNU extensions, so a basic POSIX
	  make will not work. Linux systems typically come with a
	  satisfactory make. BSD based systems (i.e., NetBSD, FreeBSD)
	  typically have GNU make as the gmake program.

	- ISO C++ Compiler
	  The ivl and ivlpp programs are written in C++ and make use
	  of templates and some of the standard C++ library. egcs and
	  recent gcc compilers with the associated libstdc++ are known
	  to work. MSVC++ 5 and 6 are known to definitely *not* work.

	- bison and flex
          OSX note: bison 2.3 shipped with MacOS including Catalina generates
          broken code, but bison 3+ works. We recommend using the Fink
          project version of bison and flex (finkproject.org), brew version
          works fine either.

	- gperf 3.0 or later
	  The lexical analyzer doesn't recognize keywords directly,
	  but instead matches symbols and looks them up in a hash
	  table in order to get the proper lexical code. The gperf
	  program generates the lookup table.

	  A version problem with this program is the most common cause
	  of difficulty. See the Icarus Verilog FAQ.

	- readline 4.2 or later
	  On Linux systems, this usually means the readline-devel
	  rpm. In any case, it is the development headers of readline
	  that are needed.

	- termcap
	  The readline library, in turn, uses termcap.

If you are building from git, you will also need software to generate
the configure scripts.

	- autoconf 2.53 or later
	  This generates configure scripts from configure.ac. The 2.53
	  or later versions are known to work, autoconf 2.13 is
	  reported to *not* work.

2.2 Compilation

Unpack the tar-ball and cd into the verilog-######### directory
(presumably, that is how you got to this README) and compile the source
with the commands:

  ./configure
  make

If you are building from git, you have to run the command below before
compiling the source. This will generate the "configure" file, which is
automatically done when building from tarball.

  sh autoconf.sh

Normally, this command automatically figures out everything it needs
to know. It generally works pretty well. There are a few flags to the
configure script that modify its behaviour:

	--prefix=<root>
	    The default is /usr/local, which causes the tool suite to
	    be compiled for install in /usr/local/bin,
	    /usr/local/share/ivl, etc.

	    I recommend that if you are configuring for precompiled
	    binaries, use --prefix=/usr.  On Solaris systems, it is
	    common to use --prefix=/opt.  You can configure for a non-root
	    install with --prefix=$HOME.

	--enable-suffix
	--enable-suffix=<your-suffix>
	--disable-suffix
	    Enable/disable changing the names of install files to use
	    a suffix string so that this version or install can co-
	    exist with other versions. This renames the installed
	    commands (iverilog, iverilog-vpi, vvp) and the installed
	    library files and include directory so that installations
	    with the same prefix but different suffix are guaranteed
	    to not interfere with each other.

	--host=<host-type>
	    Compile iverilog for a different platform. You can use:
                x64_64-w64-mingw32 for building 64-bit Windows executables
                i686-w64-mingw32 for building 32-bit Windows executables
            Both options require installing the required mingw-w64 packages.

2.3 (Optional) Testing

To run a simple test before installation, execute

  make check

The commands printed by this run might help you in running Icarus
Verilog on your own Verilog sources before the package is installed
by root.

2.4 Installation

Now install the files in an appropriate place. (The makefiles by
default install in /usr/local unless you specify a different prefix
with the --prefix=<path> flag to the configure command.) You may need
to do this as root to gain access to installation directories.

  make install

2.5 Uninstallation

The generated Makefiles also include the uninstall target. This should
remove all the files that ``make install'' creates.

3.0 How Icarus Verilog Works

This tool includes a parser which reads in Verilog (plus extensions)
and generates an internal netlist. The netlist is passed to various
processing steps that transform the design to more optimal/practical
forms, then is passed to a code generator for final output. The
processing steps and the code generator are selected by command line
switches.

3.1 Preprocessing

There is a separate program, ivlpp, that does the preprocessing. This
program implements the `include and `define directives producing
output that is equivalent but without the directives. The output is a
single file with line number directives, so that the actual compiler
only sees a single input file. See ivlpp/ivlpp.txt for details.

3.2 Parse

The Verilog compiler starts by parsing the Verilog source file. The
output of the parse is a list of Module objects in "pform". The pform
(see pform.h) is mostly a direct reflection of the compilation
step. There may be dangling references, and it is not yet clear which
module is the root.

One can see a human-readable version of the final pform by using the
``-P <path>'' flag to the ``ivl'' subcommand. This will cause ivl
to dump the pform into the file named <path>. (Note that this is not
normally done, unless debugging the ``ivl'' subcommand.)

3.3 Elaboration

This phase takes the pform and generates a netlist. The driver selects
(by user request or lucky guess) the root module to elaborate,
resolves references and expands the instantiations to form the design
netlist. (See netlist.txt.) Final semantic checks are performed during
elaboration, and some simple optimizations are performed. The netlist
includes all the behavioural descriptions, as well as gates and wires.

The elaborate() function performs the elaboration.

One can see a human-readable version of the final, elaborated and
optimized netlist by using the ``-N <path>'' flag to the compiler. If
elaboration succeeds, the final netlist (i.e., after optimizations but
before code generation) will be dumped into the file named <path>.

Elaboration is performed in two steps: scopes and parameters
first, followed by the structural and behavioural elaboration.

3.3.1 Scope Elaboration

This pass scans through the pform looking for scopes and parameters. A
tree of NetScope objects is built up and placed in the Design object,
with the root module represented by the root NetScope object. The
elab_scope.cc file contains most of the code for handling this phase.

The tail of the elaborate_scope behaviour (after the pform is
traversed) includes a scan of the NetScope tree to locate defparam
assignments that were collected during scope elaboration. This is when
the defparam overrides are applied to the parameters.

3.3.2 Netlist Elaboration

After the scopes and parameters are generated and the NetScope tree
fully formed, the elaboration runs through the pform again, this time
generating the structural and behavioural netlist. Parameters are
elaborated and evaluated by now so all the constants of code
generation are now known locally, so the netlist can be generated by
simply passing through the pform.

3.4 Optimization

This is a collection of processing steps that perform
optimizations that do not depend on the target technology. Examples of
some useful transformations are

	- eliminate null effect circuitry
	- combinational reduction
	- constant propagation

The actual functions performed are specified on the ivl command line by
the -F flags (see below).

3.5 Code Generation

This step takes the design netlist and uses it to drive the code
generator (see target.h). This may require transforming the
design to suit the technology.

The emit() method of the Design class performs this step. It runs
through the design elements, calling target functions as the need arises
to generate actual output.

The user selects the target code generator with the -t flag on the
command line.

3.6 ATTRIBUTES

    NOTE: The $attribute syntax will soon be deprecated in favour of the
    Verilog-2001 attribute syntax, which is cleaner and standardized.

The parser accepts, as an extension to Verilog, the $attribute module
item. The syntax of the $attribute item is:

	$attribute (<identifier>, <key>, <value>);

The $attribute keyword looks like a system task invocation. The
difference here is that the parameters are more restricted than those
of a system task. The <identifier> must be an identifier. This will be
the item to get an attribute. The <key> and <value> are strings, not
expressions, that give the key and the value of the attribute to be
attached to the identified object.

Attributes are [<key> <value>] pairs and are used to communicate with
the various processing steps. See the documentation for the processing
step for a list of the pertinent attributes.

Attributes can also be applied to gate types. When this is done, the
attribute is given to every instantiation of the primitive. The syntax
for the attribute statement is the same, except that the <identifier>
names a primitive earlier in the compilation unit and the statement is
placed in the global scope, instead of within a module. The semicolon is
not part of a type attribute.

Note that attributes are also occasionally used for communication
between processing steps. Processing steps that are aware of others
may place attributes on netlist objects to communicate information to
later steps.

Icarus Verilog also accepts the Verilog 2001 syntax for
attributes. They have the same general meaning as with the $attribute
syntax, but they are attached to objects by position instead of by
name. Also, the key is a Verilog identifier instead of a string.

4.0 Running iverilog

The preferred way to invoke the compiler is with the iverilog(1)
command. This program invokes the preprocessor (ivlpp) and the
compiler (ivl) with the proper command line options to get the job
done in a friendly way. See the iverilog(1) man page for usage details.


4.1 EXAMPLES

Example: Compiling "hello.vl"

------------------------ hello.vl ----------------------------
module main();

initial
  begin
    $display("Hi there");
    $finish ;
  end

endmodule

--------------------------------------------------------------

Ensure that "iverilog" is on your search path, and the vpi library
is available.

To compile the program:

  iverilog hello.vl

(The above presumes that /usr/local/include and /usr/local/lib are
part of the compiler search path, which is usually the case for gcc.)

To run the program:

  ./a.out

You can use the "-o" switch to name the output command to be generated
by the compiler. See the iverilog(1) man page.

5.0 Unsupported Constructs

Icarus Verilog is in development - as such it still only supports a
(growing) subset of Verilog.  Below is a description of some of the
currently unsupported Verilog features. This list is not exhaustive
and does not account for errors in the compiler. See the Icarus
Verilog web page for the current state of support for Verilog, and in
particular, browse the bug report database for reported unsupported
constructs.

  - System functions are supported, but the return value is a little
    tricky. See SYSTEM FUNCTION TABLE FILES in the iverilog man page.

  - Specify blocks are parsed but ignored in general.

  - trireg is not supported. tri0 and tri1 are supported.

  - tran primitives, i.e. tran, tranif1, tranif0, rtran, rtranif1
    and rtranif0 are not supported.

  - Net delays, of the form "wire #N foo;" do not work. Delays in
    every other context do work properly, including the V2001 form
    "wire #5 foo = bar;"

  - Event controls inside non-blocking assignments are not supported.
    i.e.: a <= @(posedge clk) b;

  - Macro arguments are not supported. `define macros are supported,
    but they cannot take arguments.

5.1 Nonstandard Constructs or Behaviors

Icarus Verilog includes some features that are not part of the
IEEE1364 standard, but have well-defined meaning, and also sometimes
gives nonstandard (but extended) meanings to some features of the
language that are defined. See the "extensions.txt" documentation for
more details.

    $is_signed(<expr>)
	This system function returns 1 if the expression contained is
	signed, or 0 otherwise. This is mostly of use for compiler
	regression tests.

    $sizeof(<expr>)
    $bits(<expr>)
	The $bits system function returns the size in bits of the
	expression that is its argument. The result of this
	function is undefined if the argument doesn't have a
	self-determined size.

	The $sizeof function is deprecated in favour of $bits, which is
	the same thing, but included in the SystemVerilog definition.

    $simtime
	The $simtime system function returns as a 64bit value the
	simulation time, unscaled by the time units of local
	scope. This is different from the $time and $stime functions
	which return the scaled times. This function is added for
	regression testing of the compiler and run time, but can be
	used by applications who really want the simulation time.

	Note that the simulation time can be confusing if there are
	lots of different `timescales within a design. It is not in
	general possible to predict what the simulation precision will
	turn out to be.

    $mti_random()
    $mti_dist_uniform
	These functions are similar to the IEEE1364 standard $random
	functions, but they use the Mersenne Twister (MT19937)
	algorithm. This is considered an excellent random number
	generator, but does not generate the same sequence as the
	standardized $random.

    Builtin system functions

	Certain of the system functions have well-defined meanings, so
	can theoretically be evaluated at compile-time, instead of
	using runtime VPI code. Doing so means that VPI cannot
	override the definitions of functions handled in this
	manner. On the other hand, this makes them synthesizable, and
	also allows for more aggressive constant propagation. The
	functions handled in this manner are:

		$bits
		$signed
		$sizeof
		$unsigned

	Implementations of these system functions in VPI modules will
	be ignored.

    Preprocessing Library Modules

	Icarus Verilog does preprocess modules that are loaded from
	libraries via the -y mechanism. However, the only macros
	defined during the compilation of that file are those that it
	defines itself (or includes) or that are defined in the
	command line or command file.

	Specifically, macros defined in the non-library source files
	are not remembered when the library module is loaded. This is
	intentional. If it were otherwise, then compilation results
	might vary depending on the order that libraries are loaded,
	and that is too unpredictable.

	It is said that some commercial compilers do allow macro
	definitions to span library modules. That's just plain weird.

    Width in %t Time Formats

	Standard Verilog does not allow width fields in the %t formats
	of display strings. For example, this is illegal:

		$display("Time is %0t", $time);

	Standard Verilog instead relies on the $timeformat to
	completely specify the format.

	Icarus Verilog allows the programmer to specify the field
	width. The "%t" format in Icarus Verilog works exactly as it
	does in standard Verilog. However, if the programmer chooses
	to specify a minimum width (i.e., "%5t"), then for that display
	Icarus Verilog will override the $timeformat minimum width and
	use the explicit minimum width.

    vpiScope iterator on vpiScope objects.

	In the VPI, the normal way to iterate over vpiScope objects
	contained within a vpiScope object, is the vpiInternalScope
	iterator. Icarus Verilog adds support for the vpiScope
	iterator of a vpiScope object, that iterates over *everything*
	the is contained in the current scope. This is useful in cases
	where one wants to iterate over all the objects in a scope
	without iterating over all the contained types explicitly.

    time 0 race resolution.

	Combinational logic is routinely modelled using always
	blocks. However, this can lead to race conditions if the
	inputs to the combinational block are initialized in initial
	statements. Icarus Verilog slightly modifies time 0 scheduling
	by arranging for always statements with ANYEDGE sensitivity
	lists to be scheduled before any other threads. This causes
	combinational always blocks to be triggered when the values in
	the sensitivity list are initialized by initial threads.

    Nets with Types

	Icarus Verilog supports an extended syntax that allows nets
	and regs to be explicitly typed. The currently supported types
	are logic, bool and real. This implies that "logic" and "bool"
	are new keywords. Typical syntax is:

	wire real foo = 1.0;
	reg logic bar, bat;

	... and so forth. The syntax can be turned off by using the
	-g2 flag to iverilog, and turned on explicitly with the -g2x
	flag to iverilog.

6.0 CREDITS

Except where otherwise noted, Icarus Verilog, ivl and ivlpp are
Copyright Stephen Williams. The proper notices are in the head of each
file. However, I have early on received aid in the form of fixes,
Verilog guidance, and especially testing from many people. Testers, in
particular, include a larger community of people interested in a GPL
Verilog for Linux.
GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. <signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.

简介

暂无描述 展开 收起
VHDL 等 6 种语言
GPL-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
VHDL
1
https://gitee.com/theta405/iverilog.git
git@gitee.com:theta405/iverilog.git
theta405
iverilog
iverilog
master

搜索帮助