代码拉取完成,页面将自动刷新
/*
* Copyright (c) 2003-2021 Stephen Williams (steve@icarus.com)
* Copyright CERN 2012 / Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "netlist.h"
# include "netclass.h"
# include "netparray.h"
# include "netmisc.h"
# include "compiler.h"
# include "ivl_assert.h"
using namespace std;
/*
* Search for the hierarchical name. The path may have multiple components. If
* that's the case, then recursively pull the path apart until we find the
* first item in the path, look that up, and work our way up. In most cases,
* the path will be a string of scopes, with an object at the end. But if we
* find an object before the end, then the tail will have to be figured out by
* the initial caller.
*/
bool symbol_search(const LineInfo*li, Design*des, NetScope*scope,
pform_name_t path, struct symbol_search_results*res,
NetScope*start_scope)
{
assert(scope);
bool prefix_scope = false;
if (debug_elaborate) {
cerr << li->get_fileline() << ": symbol_search: "
<< "scope: " << scope_path(scope) << endl;
cerr << li->get_fileline() << ": symbol_search: "
<< "path: " << path << endl;
if (start_scope)
cerr << li->get_fileline() << ": symbol_search: "
<< "start_scope: " << scope_path(start_scope) << endl;
}
assert(li);
ivl_assert(*li, ! path.empty());
name_component_t path_tail = path.back();
path.pop_back();
// If this is a recursive call, then we need to know that so
// that we can enable the search for scopes. Set the
// recurse_flag to true if this is a recurse.
if (start_scope==0)
start_scope = scope;
// If there are components ahead of the tail, symbol_search
// recursively. Ideally, the result is a scope that we search
// for the tail key, but there are other special cases as well.
if (! path.empty()) {
bool flag = symbol_search(li, des, scope, path, res, start_scope);
if (! flag)
return false;
// The prefix is found to be something besides a scope. Put the
// tail into the path_tail of the result, and return success. The
// caller needs to deal with that tail bit. Note that the
// path_tail is a single item, but we might have been called
// recursively, so the complete tail will be built up as we unwind.
if (res->is_found() && !res->is_scope()) {
if (!path_tail.empty())
res->path_tail.push_back(path_tail);
return true;
}
// The prefix is found to be a scope, so switch to that
// scope, set the hier_path to turn off upwards searches,
// and continue our search for the tail.
if (res->is_scope()) {
scope = res->scope;
prefix_scope = true;
if (debug_scopes || debug_elaborate) {
cerr << li->get_fileline() << ": symbol_search: "
<< "Prefix scope " << scope_path(scope) << endl;
}
if (scope->is_auto()) {
cerr << li->get_fileline() << ": error: Hierarchical "
"reference to automatically allocated item "
"`" << path_tail.name << "' in path `" << path << "'" << endl;
des->errors += 1;
}
} else {
// Prefix is present, but is NOT a scope. Fail! Actually, this
// should not happen, since this is the "not found" case, and we
// should have returned already.
assert(0);
return false;
}
}
bool passed_module_boundary = false;
// At this point, we've stripped right-most components until the search
// found the scope part of the path, or there is no scope part of the
// path. For example, if the path in was s1.s2.x, we found the scope
// s1.s2, res->is_scope() is true, and path_tail is x. We look for x
// now. The preceeding code set prefix_scope=true to ease our test below.
//
// If the input was x (without prefixes) then we don't know if x is a
// scope or item. In this case, res->is_found() is false and we may need
// to scan upwards to find the scope or item.
while (scope) {
if (debug_scopes || debug_elaborate) {
cerr << li->get_fileline() << ": symbol_search: "
<< "Looking for " << path_tail
<< " in scope " << scope_path(scope)
<< " prefix_scope=" << prefix_scope << endl;
}
if (scope->genvar_tmp.str() && path_tail.name == scope->genvar_tmp)
return false;
if (path_tail.name == "#") {
cerr << li->get_fileline() << ": sorry: "
<< "Implicit class handle \"super\" not supported." << endl;
return false;
}
// These items cannot be seen outside the bounding module where
// the search starts. But we continue searching up because scope
// names can match. For example:
//
// module top;
// int not_ok;
// dut foo(...);
// endmodule
// module dut;
// ... not_ok; // <-- Should NOT match.
// ... top.not_ok; // Matches.
// endmodule
if (!passed_module_boundary) {
if (NetNet*net = scope->find_signal(path_tail.name)) {
path.push_back(path_tail);
res->scope = scope;
res->net = net;
res->path_head = path;
return true;
}
if (NetEvent*eve = scope->find_event(path_tail.name)) {
path.push_back(path_tail);
res->scope = scope;
res->eve = eve;
res->path_head = path;
return true;
}
if (const NetExpr*par = scope->get_parameter(des, path_tail.name, res->par_type)) {
path.push_back(path_tail);
res->scope = scope;
res->par_val = par;
res->path_head = path;
return true;
}
// Static items are just normal signals and are found above.
if (scope->type() == NetScope::CLASS) {
netclass_t*clsnet = scope->find_class(des, scope->basename());
int pidx = clsnet->property_idx_from_name(path_tail.name);
if (pidx >= 0) {
ivl_type_t prop_type = clsnet->get_prop_type(pidx);
const netuarray_t*tmp_ua = dynamic_cast<const netuarray_t*>(prop_type);
if (tmp_ua) prop_type = tmp_ua->element_type();
path.push_back(path_tail);
res->scope = scope;
res->cls_val = prop_type;
res->path_head = path;
return true;
}
}
}
if (NetScope*import_scope = scope->find_import(des, path_tail.name)) {
scope = import_scope;
continue;
}
// Could not find an object. Maybe this is a child scope name? If
// so, evaluate the path components to find the exact scope this
// refers to. This item might be:
// <scope>.s
// <scope>.s[n]
// etc. The scope->child_byname tests if the name exists, and if
// it does, the eval_path_component() evaluates any [n]
// expressions to constants to generate an hname_t object for a
// more complete scope name search. Note that the index
// expressions for scope names must be constant.
if (scope->child_byname(path_tail.name)) {
bool flag = false;
hname_t path_item = eval_path_component(des, start_scope, path_tail, flag);
if (flag) {
cerr << li->get_fileline() << ": XXXXX: Errors evaluating scope index" << endl;
} else if (NetScope*chld = scope->child(path_item)) {
path.push_back(path_tail);
res->scope = chld;
res->path_head = path;
return true;
}
}
// Don't scan up if we are searching within a prefixed scope.
if (prefix_scope)
break;
// Special case: We can match the module name of a parent
// module. That means if the current scope is a module of type
// "mod", then "mod" matches the current scope. This is fairly
// obscure, but looks like this:
//
// module foo;
// reg x;
// ... foo.x; // This matches x in myself.
// endmodule
//
// This feature recurses, so code in subscopes of foo can refer to
// foo by the name "foo" as well. In general, anything within
// "foo" can use the name "foo" to reference it.
if (scope->type()==NetScope::MODULE && scope->module_name()==path_tail.name) {
path.push_back(path_tail);
res->scope = scope;
res->path_head = path;
return true;
}
// If there is no prefix, then we are free to scan upwards looking
// for a scope name. Note that only scopes can be searched for up
// past module boundaries. To handle that, set a flag to indicate
// that we passed a module boundary on the way up.
if (scope->type()==NetScope::MODULE && !scope->nested_module())
passed_module_boundary = true;
scope = scope->parent();
// Last chance - try the compilation unit. Note that modules may
// reference nets/variables in the compilation unit, even if they
// cannot reference variables in containing scope.
//
// int ok = 1;
// module top;
// int not_ok = 2;
// dut foo();
// endmodule
//
// module dut;
// ... = ok; // This reference is OK
// ... = not_ok; // This reference is NOT OK.
// endmodule
if (scope == 0 && start_scope != 0) {
scope = start_scope->unit();
start_scope = 0;
passed_module_boundary = false;
}
}
// Last chance: this is a single name, so it might be the name
// of a root scope. Ask the design if this is a root
// scope. This is only possible if there is no prefix.
if (prefix_scope==false) {
hname_t path_item (path_tail.name);
scope = des->find_scope(path_item);
if (scope) {
path.push_back(path_tail);
res->scope = scope;
res->path_head = path;
return true;
}
}
return false;
}
/*
* Compatibility version. Remove me!
*/
NetScope*symbol_search(const LineInfo*li, Design*des, NetScope*scope,
const pform_name_t&path,
NetNet*&net,
const NetExpr*&par,
NetEvent*&eve,
ivl_type_t&par_type,
ivl_type_t&cls_val)
{
symbol_search_results recurse;
bool flag = symbol_search(li, des, scope, path, &recurse);
net = 0;
cls_val = 0;
par = 0;
par_type = 0;
eve = 0;
// The compatible version doesn't know how to handle unmatched tail
// components, so report them as errors.
if (! recurse.path_tail.empty()) {
if (debug_elaborate) {
cerr << li->get_fileline() << ": symbol_search (compat): "
<< "path_tail items found: " << recurse.path_tail << endl;
}
return 0;
}
// Convert the extended results to the compatible results.
net = recurse.net;
cls_val = recurse.cls_val;
par = recurse.par_val;
par_type = recurse.par_type;
eve = recurse.eve;
if (! flag) {
return 0;
}
return recurse.scope;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。