代码拉取完成,页面将自动刷新
import torch
import numpy as np
import os
import pickle
import argparse
import matplotlib.pyplot as plt
from copy import deepcopy
from tqdm import tqdm
from einops import rearrange
import torch.nn.functional as F
from constants import DT
from constants import PUPPET_GRIPPER_JOINT_OPEN
from utils import load_data # data functions
from utils import sample_box_pose, sample_insertion_pose # robot functions
from utils import compute_dict_mean, set_seed, detach_dict # helper functions
from policy import ACTPolicy, CNNMLPPolicy
from visualize_episodes import save_videos
from detr.models.latent_model import Latent_Model_Transformer
from sim_env import BOX_POSE
import IPython
e = IPython.embed
def main(args):
set_seed(1)
# command line parameters
is_eval = args['eval']
ckpt_dir = args['ckpt_dir']
policy_class = args['policy_class']
onscreen_render = args['onscreen_render']
task_name = args['task_name']
batch_size_train = args['batch_size']
batch_size_val = args['batch_size']
num_epochs = args['num_epochs']
# get task parameters
is_sim = task_name[:4] == 'sim_'
if is_sim:
from constants import SIM_TASK_CONFIGS
task_config = SIM_TASK_CONFIGS[task_name]
else:
from aloha_scripts.constants import TASK_CONFIGS
task_config = TASK_CONFIGS[task_name]
dataset_dir = task_config['dataset_dir']
num_episodes = task_config['num_episodes']
episode_len = task_config['episode_len']
camera_names = task_config['camera_names']
name_filter = task_config.get('name_filter', lambda n: True)
# fixed parameters
state_dim = 14
lr_backbone = 1e-5
backbone = 'resnet18'
if policy_class == 'ACT':
enc_layers = 4
dec_layers = 7
nheads = 8
policy_config = {'lr': args['lr'],
'num_queries': args['chunk_size'],
'kl_weight': args['kl_weight'],
'hidden_dim': args['hidden_dim'],
'dim_feedforward': args['dim_feedforward'],
'lr_backbone': lr_backbone,
'backbone': backbone,
'enc_layers': enc_layers,
'dec_layers': dec_layers,
'nheads': nheads,
'camera_names': camera_names,
'vq': True,
'vq_class': args['vq_class'],
'vq_dim': args['vq_dim'],
}
elif policy_class == 'CNNMLP':
policy_config = {'lr': args['lr'], 'lr_backbone': lr_backbone, 'backbone' : backbone, 'num_queries': 1,
'camera_names': camera_names,}
else:
raise NotImplementedError
config = {
'num_epochs': num_epochs,
'ckpt_dir': ckpt_dir,
'episode_len': episode_len,
'state_dim': state_dim,
'lr': args['lr'],
'policy_class': policy_class,
'onscreen_render': onscreen_render,
'policy_config': policy_config,
'task_name': task_name,
'seed': args['seed'],
'temporal_agg': args['temporal_agg'],
'camera_names': camera_names,
'real_robot': not is_sim
}
# if is_eval:
# ckpt_names = [f'policy_best.ckpt']
# results = []
# for ckpt_name in ckpt_names:
# success_rate, avg_return = eval_bc(config, ckpt_name, save_episode=True)
# results.append([ckpt_name, success_rate, avg_return])
# for ckpt_name, success_rate, avg_return in results:
# print(f'{ckpt_name}: {success_rate=} {avg_return=}')
# print()
# exit()
train_dataloader, val_dataloader, stats, _ = load_data(dataset_dir, name_filter, camera_names, batch_size_train, batch_size_val)
# save dataset stats
# if not os.path.isdir(ckpt_dir):
# os.makedirs(ckpt_dir)
# stats_path = os.path.join(ckpt_dir, f'dataset_stats.pkl')
# with open(stats_path, 'wb') as f:
# pickle.dump(stats, f)
ckpt_name = f'policy_last.ckpt'
best_ckpt_info = train_bc(train_dataloader, val_dataloader, config, ckpt_name)
best_epoch, min_val_loss, best_state_dict = best_ckpt_info
# save best checkpoint
ckpt_path = os.path.join(ckpt_dir, f'latent_model_best.ckpt')
torch.save(best_state_dict, ckpt_path)
print(f'Best ckpt, val loss {min_val_loss:.6f} @ epoch{best_epoch}')
def make_policy(policy_class, policy_config):
if policy_class == 'ACT':
policy = ACTPolicy(policy_config)
elif policy_class == 'CNNMLP':
policy = CNNMLPPolicy(policy_config)
else:
raise NotImplementedError
return policy
# def make_optimizer(policy_class, policy):
# if policy_class == 'ACT':
# optimizer = policy.configure_optimizers()
# elif policy_class == 'CNNMLP':
# optimizer = policy.configure_optimizers()
# else:
# raise NotImplementedError
# return optimizer
def get_image(ts, camera_names):
curr_images = []
for cam_name in camera_names:
curr_image = rearrange(ts.observation['images'][cam_name], 'h w c -> c h w')
curr_images.append(curr_image)
curr_image = np.stack(curr_images, axis=0)
curr_image = torch.from_numpy(curr_image / 255.0).float().cuda().unsqueeze(0)
return curr_image
# def eval_bc(config, ckpt_name, save_episode=True):
# set_seed(1000)
# ckpt_dir = config['ckpt_dir']
# state_dim = config['state_dim']
# real_robot = config['real_robot']
# policy_class = config['policy_class']
# onscreen_render = config['onscreen_render']
# policy_config = config['policy_config']
# camera_names = config['camera_names']
# max_timesteps = config['episode_len']
# task_name = config['task_name']
# temporal_agg = config['temporal_agg']
# onscreen_cam = 'angle'
# # load policy and stats
# ckpt_path = os.path.join(ckpt_dir, ckpt_name)
# policy = make_policy(policy_class, policy_config)
# loading_status = policy.load_state_dict(torch.load(ckpt_path))
# print(loading_status)
# policy.cuda()
# policy.eval()
# print(f'Loaded: {ckpt_path}')
# stats_path = os.path.join(ckpt_dir, f'dataset_stats.pkl')
# with open(stats_path, 'rb') as f:
# stats = pickle.load(f)
# pre_process = lambda s_qpos: (s_qpos - stats['qpos_mean']) / stats['qpos_std']
# post_process = lambda a: a * stats['action_std'] + stats['action_mean']
# # load environment
# if real_robot:
# from aloha_scripts.robot_utils import move_grippers # requires aloha
# from aloha_scripts.real_env import make_real_env # requires aloha
# env = make_real_env(init_node=True)
# env_max_reward = 0
# else:
# from sim_env import make_sim_env
# env = make_sim_env(task_name)
# env_max_reward = env.task.max_reward
# query_frequency = policy_config['num_queries']
# if temporal_agg:
# query_frequency = 1
# num_queries = policy_config['num_queries']
# max_timesteps = int(max_timesteps * 1) # may increase for real-world tasks
# num_rollouts = 50
# episode_returns = []
# highest_rewards = []
# for rollout_id in range(num_rollouts):
# rollout_id += 0
# ### set task
# if 'sim_transfer_cube' in task_name:
# BOX_POSE[0] = sample_box_pose() # used in sim reset
# elif 'sim_insertion' in task_name:
# BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
# ts = env.reset()
# ### onscreen render
# if onscreen_render:
# ax = plt.subplot()
# plt_img = ax.imshow(env._physics.render(height=480, width=640, camera_id=onscreen_cam))
# plt.ion()
# ### evaluation loop
# if temporal_agg:
# all_time_actions = torch.zeros([max_timesteps, max_timesteps+num_queries, state_dim]).cuda()
# qpos_history = torch.zeros((1, max_timesteps, state_dim)).cuda()
# image_list = [] # for visualization
# qpos_list = []
# target_qpos_list = []
# rewards = []
# with torch.inference_mode():
# for t in range(max_timesteps):
# ### update onscreen render and wait for DT
# if onscreen_render:
# image = env._physics.render(height=480, width=640, camera_id=onscreen_cam)
# plt_img.set_data(image)
# plt.pause(DT)
# ### process previous timestep to get qpos and image_list
# obs = ts.observation
# if 'images' in obs:
# image_list.append(obs['images'])
# else:
# image_list.append({'main': obs['image']})
# qpos_numpy = np.array(obs['qpos'])
# qpos = pre_process(qpos_numpy)
# qpos = torch.from_numpy(qpos).float().cuda().unsqueeze(0)
# qpos_history[:, t] = qpos
# curr_image = get_image(ts, camera_names)
# ### query policy
# if config['policy_class'] == "ACT":
# if t % query_frequency == 0:
# all_actions = policy(qpos, curr_image)
# if temporal_agg:
# all_time_actions[[t], t:t+num_queries] = all_actions
# actions_for_curr_step = all_time_actions[:, t]
# actions_populated = torch.all(actions_for_curr_step != 0, axis=1)
# actions_for_curr_step = actions_for_curr_step[actions_populated]
# k = 0.01
# exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
# exp_weights = exp_weights / exp_weights.sum()
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
# else:
# raw_action = all_actions[:, t % query_frequency]
# elif config['policy_class'] == "CNNMLP":
# raw_action = policy(qpos, curr_image)
# else:
# raise NotImplementedError
# ### post-process actions
# raw_action = raw_action.squeeze(0).cpu().numpy()
# action = post_process(raw_action)
# target_qpos = action
# ### step the environment
# ts = env.step(target_qpos)
# ### for visualization
# qpos_list.append(qpos_numpy)
# target_qpos_list.append(target_qpos)
# rewards.append(ts.reward)
# plt.close()
# if real_robot:
# move_grippers([env.puppet_bot_left, env.puppet_bot_right], [PUPPET_GRIPPER_JOINT_OPEN] * 2, move_time=0.5) # open
# pass
# rewards = np.array(rewards)
# episode_return = np.sum(rewards[rewards!=None])
# episode_returns.append(episode_return)
# episode_highest_reward = np.max(rewards)
# highest_rewards.append(episode_highest_reward)
# print(f'Rollout {rollout_id}\n{episode_return=}, {episode_highest_reward=}, {env_max_reward=}, Success: {episode_highest_reward==env_max_reward}')
# if save_episode:
# save_videos(image_list, DT, video_path=os.path.join(ckpt_dir, f'video{rollout_id}.mp4'))
# success_rate = np.mean(np.array(highest_rewards) == env_max_reward)
# avg_return = np.mean(episode_returns)
# summary_str = f'\nSuccess rate: {success_rate}\nAverage return: {avg_return}\n\n'
# for r in range(env_max_reward+1):
# more_or_equal_r = (np.array(highest_rewards) >= r).sum()
# more_or_equal_r_rate = more_or_equal_r / num_rollouts
# summary_str += f'Reward >= {r}: {more_or_equal_r}/{num_rollouts} = {more_or_equal_r_rate*100}%\n'
# print(summary_str)
# # save success rate to txt
# result_file_name = 'result_' + ckpt_name.split('.')[0] + '.txt'
# with open(os.path.join(ckpt_dir, result_file_name), 'w') as f:
# f.write(summary_str)
# f.write(repr(episode_returns))
# f.write('\n\n')
# f.write(repr(highest_rewards))
# return success_rate, avg_return
def forward_pass(data, policy, latent_model):
image_data, qpos_data, action_data, is_pad = data
image_data, qpos_data, action_data, is_pad = image_data.cuda(), qpos_data.cuda(), action_data.cuda(), is_pad.cuda()
forward_dict = {}
gt_labels = policy.vq_encode(qpos_data, action_data, is_pad)
inputs = torch.cat([torch.zeros_like(gt_labels)[:, [0]], gt_labels[:, :-1]], dim=1)
output_logits = latent_model(inputs)
ce_loss = F.cross_entropy(output_logits, gt_labels)
with torch.no_grad():
output_labels = F.one_hot(torch.argmax(output_logits, dim=-1), num_classes=gt_labels.shape[-1]).float()
# output_latents = F.softmax(output_logits, dim=-1)
l1_error = F.l1_loss(output_labels, gt_labels, reduction='mean')
# l1_errors = []
# for i in range(l1_errors.shape[1]):
# l1_errors.append(torch.mean(l1_errors[:, i]).item())
forward_dict['loss'] = ce_loss
forward_dict['l1_error'] = l1_error
return forward_dict
def train_bc(train_dataloader, val_dataloader, config, ckpt_name):
num_epochs = config['num_epochs']
ckpt_dir = config['ckpt_dir']
seed = config['seed']
policy_class = config['policy_class']
policy_config = config['policy_config']
set_seed(seed)
vq_dim = config['policy_config']['vq_dim']
vq_class = config['policy_config']['vq_class']
latent_model = Latent_Model_Transformer(vq_dim, vq_dim, vq_class)
latent_model.cuda()
ckpt_path = os.path.join(ckpt_dir, ckpt_name)
policy = make_policy(policy_class, policy_config)
loading_status = policy.load_state_dict(torch.load(ckpt_path))
policy.eval()
policy.cuda()
optimizer = torch.optim.AdamW(latent_model.parameters(), lr=config['lr'])
train_history = []
validation_history = []
min_val_loss = np.inf
best_ckpt_info = None
for epoch in tqdm(range(num_epochs)):
print(f'\nEpoch {epoch}')
# validation
with torch.inference_mode():
latent_model.eval()
epoch_dicts = []
for batch_idx, data in enumerate(val_dataloader):
forward_dict = forward_pass(data, policy, latent_model)
epoch_dicts.append(forward_dict)
epoch_summary = compute_dict_mean(epoch_dicts)
validation_history.append(epoch_summary)
epoch_val_loss = epoch_summary['loss']
if epoch_val_loss < min_val_loss:
min_val_loss = epoch_val_loss
best_ckpt_info = (epoch, min_val_loss, deepcopy(latent_model.state_dict()))
print(f'Val loss: {epoch_val_loss:.5f}')
summary_string = ''
for k, v in epoch_summary.items():
summary_string += f'{k}: {v.item():.3f} '
print(summary_string)
# training
optimizer.zero_grad()
for batch_idx, data in enumerate(train_dataloader):
forward_dict = forward_pass(data, policy, latent_model)
# backward
loss = forward_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
train_history.append(detach_dict(forward_dict))
epoch_summary = compute_dict_mean(train_history[(batch_idx+1)*epoch:(batch_idx+1)*(epoch+1)])
epoch_train_loss = epoch_summary['loss']
print(f'Train loss: {epoch_train_loss:.5f}')
summary_string = ''
for k, v in epoch_summary.items():
summary_string += f'{k}: {v.item():.3f} '
print(summary_string)
if epoch % 100 == 0:
ckpt_path = os.path.join(ckpt_dir, f'latent_model_epoch_{epoch}_seed_{seed}.ckpt')
torch.save(latent_model.state_dict(), ckpt_path)
plot_history(train_history, validation_history, epoch, ckpt_dir, seed)
ckpt_path = os.path.join(ckpt_dir, f'latent_model_last.ckpt')
torch.save(latent_model.state_dict(), ckpt_path)
best_epoch, min_val_loss, best_state_dict = best_ckpt_info
ckpt_path = os.path.join(ckpt_dir, f'latent_model_epoch_{best_epoch}_seed_{seed}.ckpt')
torch.save(best_state_dict, ckpt_path)
print(f'Training finished:\nSeed {seed}, val loss {min_val_loss:.6f} at epoch {best_epoch}')
# save training curves
plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed)
return best_ckpt_info
def plot_history(train_history, validation_history, num_epochs, ckpt_dir, seed):
# save training curves
for key in train_history[0]:
plot_path = os.path.join(ckpt_dir, f'latent_model_val_{key}_seed_{seed}.png')
plt.figure()
train_values = [summary[key].item() for summary in train_history]
val_values = [summary[key].item() for summary in validation_history]
plt.plot(np.linspace(0, num_epochs-1, len(train_history)), train_values, label='train')
plt.plot(np.linspace(0, num_epochs-1, len(validation_history)), val_values, label='validation')
# plt.ylim([-0.1, 1])
plt.tight_layout()
plt.legend()
plt.title(key)
plt.savefig(plot_path)
print(f'Saved plots to {ckpt_dir}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval', action='store_true')
parser.add_argument('--onscreen_render', action='store_true')
parser.add_argument('--ckpt_dir', action='store', type=str, help='ckpt_dir', required=True)
parser.add_argument('--policy_class', action='store', type=str, help='policy_class, capitalize', required=True)
parser.add_argument('--task_name', action='store', type=str, help='task_name', required=True)
parser.add_argument('--batch_size', action='store', type=int, help='batch_size', required=True)
parser.add_argument('--seed', action='store', type=int, help='seed', required=True)
parser.add_argument('--num_epochs', action='store', type=int, help='num_epochs', required=True)
parser.add_argument('--lr', action='store', type=float, help='lr', required=True)
# for ACT
parser.add_argument('--kl_weight', action='store', type=int, help='KL Weight', required=False)
parser.add_argument('--chunk_size', action='store', type=int, help='chunk_size', required=False)
parser.add_argument('--hidden_dim', action='store', type=int, help='hidden_dim', required=False)
parser.add_argument('--dim_feedforward', action='store', type=int, help='dim_feedforward', required=False)
parser.add_argument('--temporal_agg', action='store_true')
parser.add_argument('--use_vq', action='store_true')
parser.add_argument('--vq_class', action='store', type=int, help='vq_class')
parser.add_argument('--vq_dim', action='store', type=int, help='vq_dim')
main(vars(parser.parse_args()))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。