代码拉取完成,页面将自动刷新
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import face, AnnotationTransform, Detection, detection_collate
from utils.augmentations import PyramidAugmentation
from layers.modules import MultiBoxLoss
from pyramid import build_sfd, SFD, SSHContext, ContextTexture
import numpy as np
import time
from layers import *
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size for training')
parser.add_argument('--resume', default=None, type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=4, type=int, help='Number of workers used in dataloading')
parser.add_argument('--start_iter', default=0, type=int,
help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float, help='initial learning rate')
parser.add_argument('--visdom', default=False, type=str2bool, help='Use visdom to for loss visualization')
parser.add_argument('--send_images_to_visdom', type=str2bool, default=False,
help='Sample a random image from each 10th batch, send it to visdom after augmentations step')
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--annoPath', default="./final_all_pt.txt", help='Location of wider face')
parser.add_argument('--gpu', default="0,1,2,3")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
cfg = face
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
# train_sets = 'train'
ssd_dim = 640 # only support 300 now
means = (104, 117, 123) # only support voc now
num_classes = 1 + 1
batch_size = args.batch_size
accum_batch_size = 32
iter_size = accum_batch_size / batch_size
# max_iter = 120000
max_iter = 30600
weight_decay = 0.0001
# stepvalues = (80000, 100000, 120000)
stepvalues = (0, 400, 800, 1200, 1600, 10600, 16600, 22600)
gamma = 0.1
# momentum = 0.9
momentum = 0.9
if args.visdom:
import visdom
viz = visdom.Visdom()
ssd_net = build_sfd('train', 640, num_classes)
net = ssd_net
if args.cuda:
net = torch.nn.DataParallel(ssd_net)
cudnn.benchmark = True
if args.cuda:
net = net.cuda()
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
if 'bias' in m.state_dict().keys():
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
xavier(m.weight.data)
if 'bias' in m.state_dict().keys():
m.bias.data.zero_()
if isinstance(m, nn.BatchNorm2d):
m.weight.data[...] = 1
m.bias.data.zero_()
for layer in net.modules():
layer.apply(weights_init)
if not args.resume:
print('Initializing weights...')
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
ssd_net.load_weights(args.resume)
else:
pass
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=momentum, weight_decay=weight_decay)
criterion = MultiBoxLoss(num_classes, 0.35, True, 0, True, 3, 0.35, False, False, args.cuda)
criterion1 = MultiBoxLoss(num_classes, 0.35, True, 0, True, 3, 0.35, False, True, args.cuda)
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0
min_loss = float('inf')
print('Loading Dataset...')
dataset = Detection(args.annoPath, PyramidAugmentation(ssd_dim, means), AnnotationTransform())
epoch_size = len(dataset) // args.batch_size
print('Training SSD on', dataset.name)
step_index = 0
step_increase = 0
if args.visdom:
# initialize visdom loss plot
lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Iteration',
ylabel='Loss',
title='Current SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
epoch_lot = viz.line(
X=torch.zeros((1,)).cpu(),
Y=torch.zeros((1, 3)).cpu(),
opts=dict(
xlabel='Epoch',
ylabel='Loss',
title='Epoch SSD Training Loss',
legend=['Loc Loss', 'Conf Loss', 'Loss']
)
)
batch_iterator = None
data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate, pin_memory=True)
for iteration in range(args.start_iter, max_iter):
t0 = time.time()
if (not batch_iterator) or (iteration % epoch_size == 0):
# create batch iterator
batch_iterator = iter(data_loader)
if iteration in stepvalues:
if iteration in stepvalues[0:5]:
step_increase += 1
warmup_learning_rate(optimizer, args.lr, step_increase)
else:
step_index += 1
adjust_learning_rate(optimizer, gamma, step_index)
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * epoch,
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu() / epoch_size,
win=epoch_lot,
update='append'
)
# reset epoch loss counters
loc_loss = 0
conf_loss = 0
epoch += 1
# load train data
images, targets = next(batch_iterator)
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda(), volatile=True) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno, volatile=True) for anno in targets]
# forward
t1 = time.time()
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(tuple(out[0:3]), targets)
loss_l_head, loss_c_head = criterion(tuple(out[3:6]), targets)
loss = loss_l + loss_c + 0.5 * loss_l_head + 0.5 * loss_c_head
if (loss.data[0] < min_loss):
min_loss = loss.data[0]
print("min_loss: " , min_loss)
torch.save(ssd_net.state_dict(), args.save_folder + 'best_our_Res50_pyramid_aug_nobaseline' + '.pth')
loss.backward()
optimizer.step()
t2 = time.time()
loc_loss += loss_l.data[0]
conf_loss += loss_c.data[0]
if iteration % 50 == 0:
print('front and back Timer: {} sec.'.format((t2 - t1)))
print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]))
print('Loss conf: {} Loss loc: {}'.format(loss_c.data[0], loss_l.data[0]))
print('Loss head conf: {} Loss head loc: {}'.format(loss_c_head.data[0], loss_l_head.data[0]))
print('lr: {}'.format(optimizer.param_groups[0]['lr']))
if args.visdom and args.send_images_to_visdom:
random_batch_index = np.random.randint(images.size(0))
viz.image(images.data[random_batch_index].cpu().numpy())
if args.visdom:
viz.line(
X=torch.ones((1, 3)).cpu() * iteration,
Y=torch.Tensor([loss_l.data[0], loss_c.data[0],
loss_l.data[0] + loss_c.data[0]]).unsqueeze(0).cpu(),
win=lot,
update='append'
)
# hacky fencepost solution for 0th epoch plot
if iteration == 0:
viz.line(
X=torch.zeros((1, 3)).cpu(),
Y=torch.Tensor([loc_loss, conf_loss,
loc_loss + conf_loss]).unsqueeze(0).cpu(),
win=epoch_lot,
update=True
)
if iteration % 500 == 0 or iteration in stepvalues:
print('Saving state, iter:', iteration)
torch.save(ssd_net.state_dict(), args.save_folder + 'our_Res50_pyramid_aug_nobaseline_' +
repr(iteration) + '.pth')
torch.save(ssd_net.state_dict(), args.save_folder + 'our_Res50_pyramid_aug_nobaseline_' + '.pth')
def warmup_learning_rate(optimizer, lr, step):
"""Sets the learning rate to the initial LR decayed by 10 at every specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
base_lr = lr / 5
for param_group in optimizer.param_groups:
param_group['lr'] = base_lr * step
def adjust_learning_rate(optimizer, gamma, step):
"""Sets the learning rate to the initial LR decayed by 10 at every specified step
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
lr = args.lr * (gamma ** (step))
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * gamma
if __name__ == '__main__':
train()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。