代码拉取完成,页面将自动刷新
同步操作将从 林树/carsim-simulink-MPC-controller-practice 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
function [sys,x0,str,ts,simStateCompliance] = MPC_Controller(t,x,u,flag)
%SFUNTMPL General MATLAB S-Function Template
% With MATLAB S-functions, you can define you own ordinary differential
% equations (ODEs), discrete system equations, and/or just about
% any type of algorithm to be used within a Simulink block diagram.
%
% The general form of an MATLAB S-function syntax is:
% [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
% What is returned by SFUNC at a given point in time, T, depends on the
% value of the FLAG, the current state vector, X, and the current
% input vector, U.
%
% FLAG RESULT DESCRIPTION
% ----- ------ --------------------------------------------
% 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
% initial state in X0, state ordering strings
% in STR, and sample times in TS.
% 1 DX Return continuous state derivatives in SYS.
% 2 DS Update discrete states SYS = X(n+1)
% 3 Y Return outputs in SYS.
% 4 TNEXT Return next time hit for variable step sample
% time in SYS.
% 5 Reserved for future (root finding).
% 9 [] Termination, perform any cleanup SYS=[].
%
%
% The state vectors, X and X0 consists of continuous states followed
% by discrete states.
%
% Optional parameters, P1,...,Pn can be provided to the S-function and
% used during any FLAG operation.
%
% When SFUNC is called with FLAG = 0, the following information
% should be returned:
%
% SYS(1) = Number of continuous states.
% SYS(2) = Number of discrete states.
% SYS(3) = Number of outputs.
% SYS(4) = Number of inputs.
% Any of the first four elements in SYS can be specified
% as -1 indicating that they are dynamically sized. The
% actual length for all other flags will be equal to the
% length of the input, U.
% SYS(5) = Reserved for root finding. Must be zero.
% SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
% has direct feedthrough if U is used during the FLAG=3
% call. Setting this to 0 is akin to making a promise that
% U will not be used during FLAG=3. If you break the promise
% then unpredictable results will occur.
% SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
% X0 = Initial state conditions or [] if no states.
%
% STR = State ordering strings which is generally specified as [].
%
% TS = An m-by-2 matrix containing the sample time
% (period, offset) information. Where m = number of sample
% times. The ordering of the sample times must be:
%
% TS = [0 0, : Continuous sample time.
% 0 1, : Continuous, but fixed in minor step
% sample time.
% PERIOD OFFSET, : Discrete sample time where
% PERIOD > 0 & OFFSET < PERIOD.
% -2 0]; : Variable step discrete sample time
% where FLAG=4 is used to get time of
% next hit.
%
% There can be more than one sample time providing
% they are ordered such that they are monotonically
% increasing. Only the needed sample times should be
% specified in TS. When specifying more than one
% sample time, you must check for sample hits explicitly by
% seeing if
% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
% is within a specified tolerance, generally 1e-8. This
% tolerance is dependent upon your model's sampling times
% and simulation time.
%
% You can also specify that the sample time of the S-function
% is inherited from the driving block. For functions which
% change during minor steps, this is done by
% specifying SYS(7) = 1 and TS = [-1 0]. For functions which
% are held during minor steps, this is done by specifying
% SYS(7) = 1 and TS = [-1 1].
%
% SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and
% restoring the complete simulation state of the
% model. The allowed values are: 'DefaultSimState',
% 'HasNoSimState' or 'DisallowSimState'. If this value
% is not speficified, then the block's compliance with
% simState feature is set to 'UknownSimState'.
% Copyright 1990-2010 The MathWorks, Inc.
%
% The following outlines the general structure of an S-function.
%
switch flag,
%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
%%%%%%%%%%%%%%%
% Derivatives %
%%%%%%%%%%%%%%%
case 1,
sys=mdlDerivatives(t,x,u);
%%%%%%%%%%
% Update %
%%%%%%%%%%
case 2,
sys=mdlUpdate(t,x,u);
%%%%%%%%%%%
% Outputs %
%%%%%%%%%%%
case 3,
sys=mdlOutputs(t,x,u);
%%%%%%%%%%%%%%%%%%%%%%%
% GetTimeOfNextVarHit %
%%%%%%%%%%%%%%%%%%%%%%%
case 4,
sys=mdlGetTimeOfNextVarHit(t,x,u);
%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case 9,
sys=mdlTerminate(t,x,u);
%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
% end sfuntmpl
%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 3;
sizes.NumOutputs = 2;
sizes.NumInputs = 3;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed
sys = simsizes(sizes);
%
% initialize the initial conditions
%
x0 = [0;0;0];
global U;
U = [0;0];
%
% str is always an empty matrix
%
str = [];
%
% initialize the array of sample times
%
ts = [0.1 0];
% Specify the block simStateCompliance. The allowed values are:
% 'UnknownSimState', < The default setting; warn and assume DefaultSimState
% 'DefaultSimState', < Same sim state as a built-in block
% 'HasNoSimState', < No sim state
% 'DisallowSimState' < Error out when saving or restoring the model sim state
simStateCompliance = 'UnknownSimState';
% end mdlInitializeSizes
%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u)
sys = [];
% end mdlDerivatives
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)
sys = x;
% end mdlUpdate
%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u)
global a b u_piao;
global U;
global kesi;
tic
Nx = 3;
Nu = 2;
Np = 60;
Nc = 30;
Row = 10;
fprintf('Update start, t=%6.3f\n',t)
t_d = u(3)*pi/180;
r(1) = 25*sin(0.2*t);
r(2) = 25+10-25*cos(0.2*t);
r(3) = 0.2*t;
vd1 = 5;
vd2 = 0.104;
kesi = zeros(Nx+Nu,1);
kesi(1) = u(1)-r(1);%u(1)==X(1)
kesi(2) = u(2)-r(2);%u(2)==X(2)
kesi(3) = u(3)*pi/180-r(3);%u(3)==X(3)
kesi(4) = U(1);
kesi(5) = U(2);
fprintf('Update start, u(1)=%4.2f\n',U(1))
fprintf('Update start, u(2)=%4.2f\n',U(2))
T = 0.1;
T_all = 40;
L = 2.6;
u_piao = zeros(Nx,Nu);
Q = 100*eye(Nx*Np,Nx*Np);
R = 5*eye(Nu*Nc);
a = [1 0 -vd1*sin(t_d)*T;
0 1 vd1*cos(t_d)*T;
0 0 1;];
b = [ cos(t_d)*T 0;
sin(t_d)*T 0;
tan(vd2)*T/L vd1*T/(cos(vd2)^2);];
A_cell = cell(2,2);
B_cell = cell(2,1);
A_cell{1,1} = a;
A_cell{1,2} = b;
A_cell{2,1} = zeros(Nu,Nx);
A_cell{2,2} = eye(Nu);
B_cell{1,1} = b;
B_cell{2,1} = eye(Nu);
A = cell2mat(A_cell);
B = cell2mat(B_cell);
C = [1 0 0 0 0; 0 1 0 0 0; 0 0 1 0 0;];
PHI_cell = cell(Np,1);
THETA_cell = cell(Np,Nc);
for j = 1:1:Np
PHI_cell{j,1} = C*A^j;
for k = 1:1:Nc
if k <= j
THETA_cell{j,k} = C*A^(j-k)*B;
else
THETA_cell{j,k} = zeros(Nx,Nu);
end
end
end
PHI = cell2mat(PHI_cell);
THETA = cell2mat(THETA_cell);
H_cell = cell(2,2);
H_cell{1,1} = THETA'*Q*THETA+R;
H_cell{1,2} = zeros(Nu*Nc,1);
H_cell{2,1} = zeros(1,Nu*Nc);
H_cell{2,2} = Row;
H = cell2mat(H_cell);
error = PHI*kesi;
f_cell = cell(1,2);
f_cell{1,1} = 2*error'*Q*THETA;
f_cell{1,2} = 0;
% f = (cell2mat(f_cell))';
f = cell2mat(f_cell);
%%以下为约束生成区域
%不等式约束
A_t = zeros(Nc,Nc); %见falcone论文P181
for p = 1:1:Nc
for q = 1:1:Nc
if q<=p
A_t(p,q) = 1;
else
A_t(p,q) = 0;
end
end
end
A_l =kron(A_t,eye(Nu));
Ut = kron(ones(Nc,1),U);
umin = [-0.2; -0.54;];
umax = [0.2; 0.332];
delta_umin = [-0.05; -0.0082;];
delta_umax = [0.05; 0.0082];
Umin = kron(ones(Nc,1),umin);
Umax = kron(ones(Nc,1),umax);
A_cons_cell = {A_l zeros(Nu*Nc,1); -A_l zeros(Nu*Nc,1)};
b_cons_cell = {Umax-Ut; -Umin+Ut};
A_cons = cell2mat(A_cons_cell);
b_cons = cell2mat(b_cons_cell);
% 状态量约束
M = 10;
delta_Umin = kron(ones(Nc,1), delta_umin);
delta_Umax = kron(ones(Nc,1), delta_umax);
lb = [delta_Umin; 0];
ub = [delta_Umax; M];
%%开始求解过程
% options = optimset('Algorithm','active-set');
options = optimset('Algorithm','interior-point-convex');
[X, fval, exitflag] = quadprog(H,f,A_cons,b_cons,[],[],lb,ub,[],options);
%%计算输出
u_piao(1) = X(1);
u_piao(2) = X(2);
U(1) = kesi(4)+u_piao(1);
U(2) = kesi(5)+u_piao(2);
u_real(1) = U(1)+vd1;
u_real(2) = U(2)+vd2;
sys = u_real;
toc
% End of mdlOutputs.
%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the result is
% absolute time. Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
function sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;
% end mdlGetTimeOfNextVarHit
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)
sys = [];
% end mdlTerminate
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。