代码拉取完成,页面将自动刷新
同步操作将从 王磊/range_libc 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import matplotlib.pyplot as plt
import yaml
from yaml import CLoader as Loader, CDumper as Dumper
import ujson
import itertools
import argparse
import scipy.misc
# dump = yaml.dump(dummy_data, fh, encoding='utf-8', default_flow_style=False, Dumper=Dumper)
# data = yaml.load(fh, Loader=Loader)
parser = argparse.ArgumentParser()
parser.add_argument('--path', help='Path to serialized json CDDT data structure')
class Map(object):
""" Map saved in a serialized CDDT """
def __init__(self, data):
print "...loading map"
self.path = data["path"]
self.width = data["width"]
self.height = data["height"]
self.data = np.array(data["data"]).transpose()
def visualize(self):
plt.imshow(-1*self.data, cmap="gray")
plt.show()
class CDDTSlice(object):
""" Contains a single slice of CDDT corresponding to a single theta value"""
def __init__(self, data):
# print "...loading slice"
self.theta = data["theta"]
self.zeros = data["zeros"]
def num_zeros(self):
return [len(lut_bin) for lut_bin in self.zeros]
def ddt_dims(self):
non_empty_zeros = filter(lambda x: len(x) > 0, self.zeros)
min_zero = min(map(min, non_empty_zeros))
max_zero = max(map(max, non_empty_zeros))
return [int(np.ceil(max_zero - min_zero))+1,len(self.zeros)]
def make_ddt(self, saw_tooth=True, reversed_dir=False):
non_empty_zeros = filter(lambda x: len(x) > 0, self.zeros)
if len(non_empty_zeros) == 0:
print "Empty slice, nothing to visualize"
return
# print map(min, self.zeros)
min_zero = min(map(min, non_empty_zeros))
max_zero = max(map(max, non_empty_zeros))
height = int(np.ceil(max_zero - min_zero))+1
grid_height = len(self.zeros)
# ddt = np.zeros((height,len(self.zeros)))
ddt = np.zeros((grid_height,len(self.zeros)))
offset = int((grid_height - height) / 2.0)
for x in xrange(len(self.zeros)):
for zp in self.zeros[x]:
y = int(zp - min_zero+offset)
ddt[y,x] = 1
if saw_tooth:
for x in xrange(len(self.zeros)):
if reversed_dir:
last = -1
for y in reversed(xrange(grid_height)):
if ddt[y,x] == 1:
last = 0
ddt[y,x] = last
elif last >= 0:
last = last + 1
ddt[y,x] = last
else:
# make the no data regions white
ddt[y,x] = -1
else:
last = -1
for y in xrange(grid_height):
if ddt[y,x] == 1:
last = 0
ddt[y,x] = last
elif last >= 0:
last = last + 1
ddt[y,x] = last
else:
# make the no data regions white
ddt[y,x] = -1
ddt[ddt == -1] = np.max(ddt)
return ddt
def visualize():
return plt.imshow(np.sqrt(self.make_ddt()),cmap="gray")
# plt.show()
# print ddt #min_zero, max_zero, height
class CDDT(object):
""" Loads a serialized CDDT datastructure for visualization and manipulation """
def __init__(self, path):
print "Loading CDDT:", path
self.path = path
print "..opening file"
cddt_file = open(path, 'r')
print "..loading json"
cddt_raw = ujson.load(cddt_file)
if not "cddt" in cddt_raw:
print "Incorrectly formatted data, exiting."
return
cddt_raw = cddt_raw["cddt"]
print "..parsing"
self.lut_translations = np.array(cddt_raw["lut_translations"])
self.max_range = cddt_raw["max_range"]
self.theta_discretization = cddt_raw["theta_discretization"]
self.map = Map(cddt_raw["map"])
print "..loading slices"
self.slices = map(CDDTSlice, cddt_raw["compressed_lut"])
self.slices = self.slices[:int(len(self.slices)/2)]
# makes a histogram of number of elements in each LUT bin
def zeros_hist(self):
# print self.slices[0].zeros()
num_zeros = map(lambda x: x.num_zeros(), self.slices)
plt.hist(num_zeros)
plt.show()
# print list(itertools.chain.from_iterable(num_zeros))
# print num_zeros[0]
class SliceScroller(object):
def __init__(self, cddt):
# self.fig, (self.ax1,self.ax2) = plt.subplots(2, 1)
self.fig = plt.figure()
self.ax1 = plt.subplot(6,1,1)
self.ax2 = plt.subplot(6,1,2)
self.ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
self.ax2 = plt.subplot2grid((4, 1), (3, 0))
# ax3 = plt.subplot2grid((6, 1), (2, 0))
# ax4 = plt.subplot2grid((6, 1), (3, 0))
# ax5 = plt.subplot2grid((6, 1), (4, 0), rowspan=2)
# plt.subplot(6,1,3)
# plt.subplot(2,1,2)
# self.ax = ax
# self.fig = fig
self.ax1.set_title('use scroll wheel to navigate images')
self.cddt = cddt
self.ind = 2
self.fig.canvas.mpl_connect('scroll_event', self.onscroll)
self.ddts = [None]*len(self.cddt.slices)
# dims = np.array(map(lambda x: x.ddt_dims(), self.cddt.slices))
# max_dims = np.max(dims,axis=0)
# print (int(max_dims[1]),int(max_dims[0]))
# self.ddt = np.ones((max_dims[1],max_dims[0]))
# self.ddt = 255*np.random.rand(int(max_dims[0]),int(max_dims[1]))
# self.im = ax.imshow(self.ddt, cmap="gray")
self.update()
# self.get_viz()
# print self.ddt.shape
# self.im = ax.imshow(self.ddt, cmap="gray")
# self.im.axes.figure.canvas.draw()
def onscroll(self, evt):
print("Slice: %s Theta: %s" % (self.ind, self.cddt.slices[self.ind].theta))
self.ind = int((self.ind + evt.step) % len(self.cddt.slices))
self.update()
def update(self):
plt.tight_layout()
self.ax1.cla()
self.ax2.cla()
self.ax1.axis('off')
if not isinstance(self.ddts[self.ind], np.ndarray):
# if self.ddts[self.ind] == None:
self.ddts[self.ind] = np.sqrt(self.cddt.slices[self.ind].make_ddt(True)).transpose()
ys = map(len, self.cddt.slices[self.ind].zeros)
compression_factor = 2*self.cddt.map.width * self.cddt.map.height / (sum(ys))
self.ax1.set_title("DDT - Reconstructed from a slice of the PCDDT, compression factor: " + str(compression_factor))
self.ax1.set_ylabel('Theta = %s' % self.cddt.slices[self.ind].theta)
self.ax1.imshow(self.ddts[self.ind],cmap="gray",interpolation='nearest', aspect='auto')
self.ax2.set_title("Number of entries projected into each PCDDT bin")
self.ax2.plot(ys)
self.fig.canvas.draw()
# self.im.set_data(self.ddt)
# self.im.axes.figure.canvas.draw()
# ind = 0
# def scroll_slices(saw_tooth=True):
# fig = plt.figure()
# ddt = cddt.slices[10].make_ddt()
# # im = plt.imshow(np.sqrt(ddt), cmap="gray")
# im = plt.imshow(np.ones((100,100)), cmap="gray")
# def onscroll(evt):
# global ind
# print "Slice:", ind, "theta:", cddt.slices[ind].theta
# ind = int((ind + evt.step) % len(cddt.slices))
# ddt = cddt.slices[ind].make_ddt()
# im.set_data(ind*np.ones((100,100)))
# im.axes.figure.canvas.draw()
# # cddt.slices[0].visualize()
# # plt.show()
# fig.canvas.mpl_connect('scroll_event', onscroll)
# plt.show()
# generate LUT slice vs DDT graphics
if __name__ == '__main__':
ddt_img = scipy.misc.imread("./paper/ddt_neg_pi_over_4_no_pow.png")
lut_img = scipy.misc.imread("./paper/lut_slice_neg_pi_over_4.png")
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
ax2 = plt.subplot2grid((4, 1), (3, 0))
# plt.tight_layout()
row_num = 700
ax1.axis('off')
ax2.set_ylim([0,200])
ax2.set_xlim([0,ddt_img.shape[1]])
ddt_img_color = np.zeros((ddt_img.shape[0], ddt_img.shape[1], 3), dtype=np.uint8)
ddt_img_color[:, :, :] = ddt_img[:, :, np.newaxis]
ax2.plot(ddt_img[row_num,:])
ddt_img_color[row_num-2:row_num+2,:,:] = (0,0,255)
ddt_img_color[:3,:,:] = (0,0,0)
ddt_img_color[-3:,:,:] = (0,0,0)
ax1.imshow(ddt_img_color)
plt.figure()
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
ax2 = plt.subplot2grid((4, 1), (3, 0))
# plt.tight_layout()
row_num = 600
ax1.axis('off')
ax2.set_ylim([0,250])
ax2.set_xlim([0,lut_img.shape[1]])
ax2.plot(lut_img[row_num,:])
lut_img_color = np.zeros((lut_img.shape[0], lut_img.shape[1], 3), dtype=np.uint8)
lut_img_color[:, :, :] = lut_img[:, :, np.newaxis]
lut_img_color[row_num-2:row_num+2,:,:] = (0,0,255)
lut_img_color[:3,:,:] = (0,0,0)
lut_img_color[-3:,:,:] = (0,0,0)
ax1.imshow(lut_img_color, cmap="gray")
# plt.ylim([0,250])
# plt.plot(lut_img[600,:])
# plt.figure()
# lut_img[600,:] = 255
# plt.imshow(lut_img, cmap="gray")
plt.show()
exit()
if __name__ == '__main__':
args = parser.parse_args()
cddt = CDDT(args.path)
# plt.imshow(np.sqrt(cddt.slices[3].make_ddt(reversed_dir=True).transpose()), cmap="gray")
w = 1350
img = np.power(cddt.slices[3].make_ddt(reversed_dir=True).transpose()[120:120+w,:w],0.7)
# img = np.power(cddt.slices[3].make_ddt(reversed_dir=True).transpose()[120:120+w,:w],1.0)
plt.imshow(img, cmap="gray")
# scipy.misc.imsave("./paper/ddt_neg_pi_over_4_no_pow.png",img)
# plt.imshow(cddt.slices[3].make_ddt(reversed_dir=True), cmap="gray")
plt.show()
# X = np.random.rand(20, 20, 40)
# tracker = SliceScroller(cddt)
# plt.show()
# You probably won't need this if you're embedding things in a tkinter plot...
# plt.ion()
# fig, ax = plt.subplots(1, 1)
# # X = numpy.random.rand(20, 20, 40)
# scroller = SliceScroller(ax,fig, cddt)
# fig.canvas.mpl_connect('scroll_event', scroller.onscroll)
# plt.show()
# SliceScroller(cddt)
# scroll_slices()
# cddt.slices[0].visualize()
# cddt.map.visualize()
# cddt.zeros_hist()
# from __future__ import print_function
# import numpy as np
# import matplotlib.pyplot as plt
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。