代码拉取完成,页面将自动刷新
import sys
import matplotlib.pyplot as plt
import numpy as np
import pickle
import glob
from __future__ import print_function, division
from music21 import converter, instrument, note, chord, stream
from keras.layers import Input, Dense, Reshape, Dropout, CuDNNLSTM, Bidirectional
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import np_utils
def get_notes():
""" Get all the notes and chords from the midi files """
notes = []
for file in glob.glob("Pokemon MIDIs/*.mid"):
midi = converter.parse(file)
print("Parsing %s" % file)
notes_to_parse = None
try: # file has instrument parts
s2 = instrument.partitionByInstrument(midi)
notes_to_parse = s2.parts[0].recurse()
except: # file has notes in a flat structure
notes_to_parse = midi.flat.notes
for element in notes_to_parse:
if isinstance(element, note.Note):
notes.append(str(element.pitch))
elif isinstance(element, chord.Chord):
notes.append('.'.join(str(n) for n in element.normalOrder))
return notes
def prepare_sequences(notes, n_vocab):
""" Prepare the sequences used by the Neural Network """
sequence_length = 100
# Get all pitch names
pitchnames = sorted(set(item for item in notes))
# Create a dictionary to map pitches to integers
note_to_int = dict((note, number) for number, note in enumerate(pitchnames))
network_input = []
network_output = []
# create input sequences and the corresponding outputs
for i in range(0, len(notes) - sequence_length, 1):
sequence_in = notes[i:i + sequence_length]
sequence_out = notes[i + sequence_length]
network_input.append([note_to_int[char] for char in sequence_in])
network_output.append(note_to_int[sequence_out])
n_patterns = len(network_input)
# Reshape the input into a format compatible with LSTM layers
network_input = np.reshape(network_input, (n_patterns, sequence_length, 1))
# Normalize input between -1 and 1
network_input = (network_input - float(n_vocab)/2) / (float(n_vocab)/2)
network_output = np_utils.to_categorical(network_output)
return (network_input, network_output)
def generate_notes(model, network_input, n_vocab):
""" Generate notes from the neural network based on a sequence of notes """
# pick a random sequence from the input as a starting point for the prediction
start = numpy.random.randint(0, len(network_input)-1)
# Get pitch names and store in a dictionary
pitchnames = sorted(set(item for item in notes))
int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
pattern = network_input[start]
prediction_output = []
# generate 500 notes
for note_index in range(500):
prediction_input = numpy.reshape(pattern, (1, len(pattern), 1))
prediction_input = prediction_input / float(n_vocab)
prediction = model.predict(prediction_input, verbose=0)
index = numpy.argmax(prediction)
result = int_to_note[index]
prediction_output.append(result)
pattern = numpy.append(pattern,index)
#pattern.append(index)
pattern = pattern[1:len(pattern)]
return prediction_output
def create_midi(prediction_output, filename):
""" convert the output from the prediction to notes and create a midi file
from the notes """
offset = 0
output_notes = []
# create note and chord objects based on the values generated by the model
for item in prediction_output:
pattern = item[0]
# pattern is a chord
if ('.' in pattern) or pattern.isdigit():
notes_in_chord = pattern.split('.')
notes = []
for current_note in notes_in_chord:
new_note = note.Note(int(current_note))
new_note.storedInstrument = instrument.Piano()
notes.append(new_note)
new_chord = chord.Chord(notes)
new_chord.offset = offset
output_notes.append(new_chord)
# pattern is a note
else:
new_note = note.Note(pattern)
new_note.offset = offset
new_note.storedInstrument = instrument.Piano()
output_notes.append(new_note)
# increase offset each iteration so that notes do not stack
offset += 0.5
midi_stream = stream.Stream(output_notes)
midi_stream.write('midi', fp='{}.mid'.format(filename))
class GAN():
def __init__(self, rows):
self.seq_length = rows
self.seq_shape = (self.seq_length, 1)
self.latent_dim = 1000
self.disc_loss = []
self.gen_loss =[]
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates note sequences
z = Input(shape=(self.latent_dim,))
generated_seq = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
validity = self.discriminator(generated_seq)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_discriminator(self):
model = Sequential()
model.add(CuDNNLSTM(512, input_shape=self.seq_shape, return_sequences=True))
model.add(Bidirectional(CuDNNLSTM(512)))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
seq = Input(shape=self.seq_shape)
validity = model(seq)
return Model(seq, validity)
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.seq_shape), activation='tanh'))
model.add(Reshape(self.seq_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
seq = model(noise)
return Model(noise, seq)
def train(self, epochs, batch_size=128, sample_interval=50):
# Load and convert the data
notes = get_notes()
n_vocab = len(set(notes))
X_train, y_train = prepare_sequences(notes, n_vocab)
# Adversarial ground truths
real = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
# Training the model
for epoch in range(epochs):
# Training the discriminator
# Select a random batch of note sequences
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_seqs = X_train[idx]
#noise = np.random.choice(range(484), (batch_size, self.latent_dim))
#noise = (noise-242)/242
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Generate a batch of new note sequences
gen_seqs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(real_seqs, real)
d_loss_fake = self.discriminator.train_on_batch(gen_seqs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# Training the Generator
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Train the generator (to have the discriminator label samples as real)
g_loss = self.combined.train_on_batch(noise, real)
# Print the progress and save into loss lists
if epoch % sample_interval == 0:
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
self.disc_loss.append(d_loss[0])
self.gen_loss.append(g_loss)
self.generate(notes)
self.plot_loss()
def generate(self, input_notes):
# Get pitch names and store in a dictionary
notes = input_notes
pitchnames = sorted(set(item for item in notes))
int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
# Use random noise to generate sequences
noise = np.random.normal(0, 1, (1, self.latent_dim))
predictions = self.generator.predict(noise)
pred_notes = [x*242+242 for x in predictions[0]]
pred_notes = [int_to_note[int(x)] for x in pred_notes]
create_midi(pred_notes, 'gan_final')
def plot_loss(self):
plt.plot(self.disc_loss, c='red')
plt.plot(self.gen_loss, c='blue')
plt.title("GAN Loss per Epoch")
plt.legend(['Discriminator', 'Generator'])
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.savefig('GAN_Loss_per_Epoch_final.png', transparent=True)
plt.close()
if __name__ == '__main__':
gan = GAN(rows=100)
gan.train(epochs=5000, batch_size=32, sample_interval=1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。