代码拉取完成,页面将自动刷新
#ifndef IVL_netmisc_H
#define IVL_netmisc_H
/*
* Copyright (c) 1999-2024 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "netlist.h"
class netsarray_t;
/*
* Search for a hierarchical name. The input path is one or more name
* components (name_component_t) which describe a path to the object. The
* simplest case is the path is a single name_component_t. This is the most
* usual case. More complex cases might include a string of name components
* that end in an item or scope, like this:
*
* a.b[1].c
*
* In this case, the "path input would include a.b.c, with index expressions
* on name_component_t for "b". In this case, usually "c" is the found item
* and "a" and "b" are scopes that lead up to the item.
*
* The search will stop when it finds a component in the path that is an
* object of some sort (other then a scope. So for example, if a.b is an
* array, then the search for a.b[1].c will stop at a.b, leave a.b[1] in
* path_head, and "c" in path_tail. It is up to the caller to then note that
* "c" must be a method of some sort.
*/
struct symbol_search_results {
inline symbol_search_results() {
scope = 0;
net = 0;
par_val = 0;
type = 0;
eve = 0;
decl_after_use = 0;
}
inline bool is_scope() const {
if (net) return false;
if (eve) return false;
if (par_val) return false;
if (scope) return true;
return false;
}
inline bool is_found() const {
if (net) return true;
if (eve) return true;
if (par_val) return true;
if (scope) return true;
return false;
}
// Scope where symbol was located. This is set in all cases,
// assuming the search succeeded.
NetScope*scope;
// If this was a net, the signal itself.
NetNet*net;
// If this was a parameter, the value expression and the
// optional value dimensions.
const NetExpr*par_val;
ivl_type_t type;
// If this is a named event, ...
NetEvent*eve;
// If a symbol was located but skipped because its lexical position
// is after the lexical position of the name being searched, it is
// stored here. If more than one such symbol is found, the first
// one is retained.
const LineInfo*decl_after_use;
// Store bread crumbs of the search here. The path_tail is the parts
// of the original path that were not found, or are after an object
// (and so are probably members or methods).
pform_name_t path_tail;
// The path_head is the parts of the original path that were found.
// The last item in path_head is the final name (possibly before the
// path_tail items) that identifies the object. This name may contain
// index expressions. If the search result is a scope, then this name
// is also the name of the scope identified.
pform_name_t path_head;
};
/*
* Test the search results and return true if this represents a function
* return value. That will be the case if the object is a net, the scope
* containing the object is a FUNCtion, and the containing scope and the
* object have the same name.
*/
static inline bool test_function_return_value(const symbol_search_results&search_results)
{
if (!search_results.net) return false;
if (search_results.scope->type()!=NetScope::FUNC) return false;
if (search_results.net->name() != search_results.scope->basename()) return false;
return true;
}
extern bool symbol_search(const LineInfo*li, Design*des, NetScope*scope,
pform_name_t path, unsigned lexical_pos,
struct symbol_search_results*res,
NetScope*start_scope = nullptr, bool prefix_scope = false);
extern bool symbol_search(const LineInfo *li, Design *des, NetScope *scope,
const pform_scoped_name_t &path, unsigned lexical_pos,
struct symbol_search_results*res);
/*
* This function transforms an expression by either zero or sign extending
* the high bits until the expression has the desired width. This may mean
* not transforming the expression at all, if it is already wide enough.
* The extension method and the returned expression type is determined by
* signed_flag.
*/
extern NetExpr*pad_to_width(NetExpr*expr, unsigned wid, bool signed_flag,
const LineInfo&info, ivl_type_t use_type = 0);
/*
* This version determines the extension method from the base expression type.
*/
inline NetExpr*pad_to_width(NetExpr*expr, unsigned wid, const LineInfo&info, ivl_type_t use_type = 0)
{
return pad_to_width(expr, wid, expr->has_sign(), info, use_type);
}
/*
* This function transforms an expression by either zero or sign extending
* or discarding the high bits until the expression has the desired width.
* This may mean not transforming the expression at all, if it is already
* the correct width. The extension method (if needed) and the returned
* expression type is determined by signed_flag.
*/
extern NetExpr*cast_to_width(NetExpr*expr, unsigned wid, bool signed_flag,
const LineInfo&info);
extern NetNet*pad_to_width(Design*des, NetNet*n, unsigned w,
const LineInfo&info);
extern NetNet*pad_to_width_signed(Design*des, NetNet*n, unsigned w,
const LineInfo&info);
/*
* Generate the nodes necessary to cast an expression (a net) to a
* real value.
*/
extern NetNet*cast_to_int4(Design*des, NetScope*scope, NetNet*src, unsigned wid);
extern NetNet*cast_to_int2(Design*des, NetScope*scope, NetNet*src, unsigned wid);
extern NetNet*cast_to_real(Design*des, NetScope*scope, NetNet*src);
extern NetExpr*cast_to_int4(NetExpr*expr, unsigned width);
extern NetExpr*cast_to_int2(NetExpr*expr, unsigned width);
extern NetExpr*cast_to_real(NetExpr*expr);
/*
* Take the input expression and return a variation that assures that
* the expression is 1-bit wide and logical. This reflects the needs
* of conditions i.e. for "if" statements or logical operators.
*/
extern NetExpr*condition_reduce(NetExpr*expr);
/*
* This function transforms an expression by cropping the high bits
* off with a part select. The result has the width w passed in. This
* function does not pad, use pad_to_width if padding is desired.
*/
extern NetNet*crop_to_width(Design*des, NetNet*n, unsigned w);
extern bool calculate_part(const LineInfo*li, Design*des, NetScope*scope,
const index_component_t&index,
long&off, unsigned long&wid);
/*
* These functions generate an equation to normalize an expression using
* the provided vector/array information.
*/
extern NetExpr*normalize_variable_base(NetExpr *base, long msb, long lsb,
unsigned long wid, bool is_up,
long slice_off =0);
/*
* Calculate a canonicalizing expression for a bit select, when the
* base expression is the last index of an otherwise complete bit
* select. For example:
* reg [3:0][7:0] foo;
* ... foo[1][x] ...
* base is (x) and the generated expression will be (x+8).
*/
extern NetExpr*normalize_variable_bit_base(const std::list<long>&indices, NetExpr *base,
const NetNet*reg);
/*
* This is similar to normalize_variable_bit_base, but the tail index
* it a base and width, instead of a bit. This is used for handling
* indexed part selects:
* reg [3:0][7:0] foo;
* ... foo[1][x +: 2]
* base is (x), wid input is (2), and is_up is (true). The output
* expression is (x+8).
*/
extern NetExpr *normalize_variable_part_base(const std::list<long>&indices, NetExpr*base,
const NetNet*reg,
unsigned long wid, bool is_up);
/*
* Calculate a canonicalizing expression for a slice select. The
* indices array is less than needed to fully address a bit, so the
* result is a slice of the packed array. The return value is an
* expression that gets to the base of the slice, and (lwid) becomes
* the width of the slice, in bits. For example:
* reg [4:1][7:0] foo
* ...foo[x]...
* base is (x) and the generated expression will be (x*8 - 8), with
* lwid set to (8).
*/
extern NetExpr*normalize_variable_slice_base(const std::list<long>&indices, NetExpr *base,
const NetNet*reg, unsigned long&lwid);
/*
* The as_indices() manipulator is a convenient way to emit a list of
* index values in the form [<>][<>]....
*/
template <class TYPE> struct __IndicesManip {
explicit inline __IndicesManip(const std::list<TYPE>&v) : val(v) { }
const std::list<TYPE>&val;
};
template <class TYPE> inline __IndicesManip<TYPE> as_indices(const std::list<TYPE>&indices)
{ return __IndicesManip<TYPE>(indices); }
extern std::ostream& operator << (std::ostream&o, __IndicesManip<long>);
extern std::ostream& operator << (std::ostream&o, __IndicesManip<NetExpr*>);
/*
* Given a list of index expressions, generate elaborated expressions
* and constant values, if possible.
*/
struct indices_flags {
bool invalid; // at least one index failed elaboration
bool variable; // at least one index is a dynamic value
bool undefined; // at least one index is an undefined value
};
extern void indices_to_expressions(Design*des, NetScope*scope,
// loc is for error messages.
const LineInfo*loc,
// src is the index list, and count is
// the number of items in the list to use.
const std::list<index_component_t>&src, unsigned count,
// True if the expression MUST be constant.
bool need_const,
// These are the outputs.
indices_flags&flags,
std::list<NetExpr*>&indices,std::list<long>&indices_const);
extern NetExpr*normalize_variable_unpacked(const NetNet*net, std::list<long>&indices);
extern NetExpr*normalize_variable_unpacked(const netsarray_t*net, std::list<long>&indices);
extern NetExpr*normalize_variable_unpacked(const NetNet*net, std::list<NetExpr*>&indices);
extern NetExpr*normalize_variable_unpacked(const LineInfo&loc, const netsarray_t*net, std::list<NetExpr*>&indices);
extern NetExpr*make_canonical_index(Design*des, NetScope*scope,
// loc for error messages
const LineInfo*loc,
// src is the index list
const std::list<index_component_t>&src,
// This is the reference type
const netsarray_t*stype,
// True if the expression MUST be constant.
bool need_const);
/*
* This function takes as input a NetNet signal and adds a constant
* value to it. If the val is 0, then simply return sig. Otherwise,
* return a new NetNet value that is the output of an addition.
*
* Not currently used.
*/
#if 0
extern NetNet*add_to_net(Design*des, NetNet*sig, long val);
#endif
extern NetNet*sub_net_from(Design*des, NetScope*scope, long val, NetNet*sig);
/*
* Make a NetEConst object that contains only X bits.
*/
extern NetEConst*make_const_x(unsigned long wid);
extern NetEConst*make_const_0(unsigned long wid);
extern NetEConst*make_const_val(unsigned long val);
extern NetEConst*make_const_val_s(long val);
/*
* Make a const net.
*/
extern NetNet* make_const_0(Design*des, NetScope*scope, unsigned long wid);
extern NetNet* make_const_x(Design*des, NetScope*scope, unsigned long wid);
extern NetNet* make_const_z(Design*des, NetScope*scope, unsigned long wid);
/*
* In some cases the lval is accessible as a pointer to the head of
* a list of NetAssign_ objects. This function returns the width of
* the l-value represented by this list.
*/
extern unsigned count_lval_width(const class NetAssign_*first);
/*
* This function elaborates an expression, and tries to evaluate it
* right away. If the expression can be evaluated, this returns a
* constant expression. If it cannot be evaluated, it returns whatever
* it can. If the expression cannot be elaborated, return 0.
*
* The context_width is the width of the context where the expression is
* being elaborated, or -1 if the expression is self-determined, or -2
* if the expression is lossless self-determined (this last option is
* treated as standard self-determined if the gn_strict_expr_width flag
* is set).
*
* cast_type allows the expression to be cast to a different type
* (before it is evaluated). If cast to a vector type, the vector
* width will be set to the context_width. The default value of
* IVL_VT_NO_TYPE causes the expression to retain its self-determined
* type.
*/
class PExpr;
extern NetExpr* elab_and_eval(Design*des, NetScope*scope,
PExpr*pe, int context_width,
bool need_const =false,
bool annotatable =false,
ivl_variable_type_t cast_type =IVL_VT_NO_TYPE,
bool force_unsigned =false);
/*
* This form of elab_and_eval uses the ivl_type_t to carry type
* information instead of the piecemeal form. We should transition to
* this form as we reasonably can.
*/
extern NetExpr* elab_and_eval(Design*des, NetScope*scope,
PExpr*expr, ivl_type_t lv_net_type,
bool need_const);
/*
* This function is a variant of elab_and_eval that elaborates and
* evaluates the arguments of a system task.
*/
extern NetExpr* elab_sys_task_arg(Design*des, NetScope*scope,
perm_string name, unsigned arg_idx,
PExpr*pe, bool need_const =false);
/*
* This function elaborates an expression as if it is for the r-value
* of an assignment, The lv_type and lv_width are the type and width
* of the l-value, and the expr is the expression to elaborate. The
* result is the NetExpr elaborated and evaluated. (See elab_expr.cc)
*
* I would rather that all calls to elaborate_rval_expr use the
* lv_net_type argument to express the l-value type, but, for now,
* that it not possible. Those cases will be indicated by the
* lv_net_type being set to nil.
*/
extern NetExpr* elaborate_rval_expr(Design*des, NetScope*scope,
ivl_type_t lv_net_type,
ivl_variable_type_t lv_type,
unsigned lv_width, PExpr*expr,
bool need_const =false,
bool force_unsigned =false);
/*
* Same as above, but lv_width and lv_type are derived from the lv_net_type.
*/
extern NetExpr* elaborate_rval_expr(Design *des, NetScope *scope,
ivl_type_t lv_net_type, PExpr *expr,
bool need_const = false,
bool force_unsigned = false);
extern bool evaluate_range(Design*des, NetScope*scope, const LineInfo*li,
const pform_range_t&range,
long&index_l, long&index_r);
extern bool evaluate_ranges(Design*des, NetScope*scope, const LineInfo*li,
netranges_t&llist,
const std::list<pform_range_t>&rlist);
/*
* This procedure evaluates an expression and if the evaluation is
* successful the original expression is replaced with the new one.
*/
void eval_expr(NetExpr*&expr, int context_width =-1);
/*
* Get the long integer value for the passed in expression, if
* possible. If it is not possible (the expression is not evaluated
* down to a constant) then return false and leave value unchanged.
*/
bool eval_as_long(long&value, const NetExpr*expr);
bool eval_as_double(double&value, NetExpr*expr);
/*
* Evaluate an entire scope path in the context of the given scope.
*/
extern std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
const pform_name_t&path);
extern hname_t eval_path_component(Design*des, NetScope*scope,
const name_component_t&comp,
bool&error_flag);
/*
* If this scope is contained within a class scope (i.e. a method of a
* class) then return the class definition that contains it.
*/
extern const netclass_t*find_class_containing_scope(const LineInfo&loc,const NetScope*scope);
extern NetScope* find_method_containing_scope(const LineInfo&log, NetScope*scope);
/*
* Return true if the data type is a type that is normally available
* in vector for. IVL_VT_BOOL and IVL_VT_LOGIC are vectorable,
* IVL_VT_REAL is not.
*/
extern bool type_is_vectorable(ivl_variable_type_t type);
/*
* Return a human readable version of the operator.
*/
const char *human_readable_op(const char op, bool unary = false);
/*
* Is the expression a constant value and if so what is its logical
* value.
*
* C_NON - the expression is not a constant value.
* C_0 - the expression is constant and it has a false value.
* C_1 - the expression is constant and it has a true value.
* C_X - the expression is constant and it has an 'bX value.
*/
enum const_bool { C_NON, C_0, C_1, C_X };
const_bool const_logical(const NetExpr*expr);
/*
* When scaling a real value to a time we need to do some standard
* processing.
*/
extern uint64_t get_scaled_time_from_real(Design*des,
NetScope*scope,
NetECReal*val);
extern void collapse_partselect_pv_to_concat(Design*des, NetNet*sig);
extern bool evaluate_index_prefix(Design*des, NetScope*scope,
std::list<long>&prefix_indices,
const std::list<index_component_t>&indices);
extern NetExpr*collapse_array_indices(Design*des, NetScope*scope, NetNet*net,
const std::list<index_component_t>&indices);
extern NetExpr*collapse_array_exprs(Design*des, NetScope*scope,
const LineInfo*loc, NetNet*net,
const std::list<index_component_t>&indices);
extern void assign_unpacked_with_bufz(Design*des, NetScope*scope,
const LineInfo*loc,
NetNet*lval, NetNet*rval);
extern NetPartSelect* detect_partselect_lval(Link&pin);
/*
* Print a warning if we find a mixture of default and explicit timescale
* based delays in the design, since this is likely an error.
*/
extern void check_for_inconsistent_delays(NetScope*scope);
#endif /* IVL_netmisc_H */
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。