代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
"""Fiber_Noisy_Feedback_v1.ipynb
This file simulates the BLER vs SNR of such trained communication system
"""
import numpy as np
import os
import tensorflow as tf
from keras.utils import to_categorical
import matplotlib.pyplot as pl
import matplotlib.cm as cm
import math
import time
import seaborn as sns
from matplotlib.animation import FuncAnimation
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
M = 16
lr_receiver = 0.008
lr_transmitter = 0.001
sigma_pi = np.sqrt(0.0001) # Variance for Gaussian policy
tx_layers = 3
rx_layers = 3
NN_T = 30 # Number of neurons in each hidden layer
NN_R = 50
epsilon = 0.000000001
# Parameters for fiber channel:
gamma = 1.27 # non-linearity parameter
L = 2000 # total link length
K = 20 #
P_noise_dBm = -21.3 # dBw
P_noise_W = 10 ** (P_noise_dBm / 10) / 1000
sigma = np.sqrt(P_noise_W / K) / np.sqrt(2)
# one hot encoding
messages = np.array(np.arange(1, M + 1))
one_hot_encoded = to_categorical(messages - 1)
one_hot_labels = np.transpose(one_hot_encoded)
with tf.variable_scope('Transmitter'):
WT = []
BT = []
for num_layer in range(1, tx_layers + 1):
w_name = 'WT' + str(num_layer)
b_name = 'BT' + str(num_layer)
if num_layer == 1:
weights = tf.get_variable(w_name, [NN_T, M], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [NN_T, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WT = np.append(WT, weights)
BT = np.append(BT, bias)
elif num_layer == tx_layers:
weights = tf.get_variable(w_name, [2, NN_T], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [2, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WT = np.append(WT, weights)
BT = np.append(BT, bias)
else:
weights = tf.get_variable(w_name, [NN_T, NN_T], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [NN_T, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WT = np.append(WT, weights)
BT = np.append(BT, bias)
def transmitter(in_message):
layer = []
for n_tx in range(1, tx_layers + 1):
if n_tx == 1:
layer = tf.nn.relu(tf.add(tf.matmul(WT[n_tx - 1], in_message), BT[n_tx - 1])) # input layer
elif n_tx < tx_layers:
layer = tf.nn.relu(tf.add(tf.matmul(WT[n_tx - 1], layer), BT[n_tx - 1])) # input layer
else:
layer = tf.add(tf.matmul(WT[n_tx - 1], layer), BT[n_tx - 1])
return layer
with tf.variable_scope('Receiver'):
WR = []
BR = []
for num_layer in range(1, rx_layers + 1):
w_name = 'WR' + str(num_layer)
b_name = 'BR' + str(num_layer)
if num_layer == 1:
weights = tf.get_variable(w_name, [NN_R, 2], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [NN_R, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WR = np.append(WR, weights)
BR = np.append(BR, bias)
elif num_layer == rx_layers:
weights = tf.get_variable(w_name, [M, NN_R], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [M, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WR = np.append(WR, weights)
BR = np.append(BR, bias)
else:
weights = tf.get_variable(w_name, [NN_R, NN_R], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
bias = tf.get_variable(b_name, [NN_R, 1], dtype='float64',
initializer=tf.contrib.layers.xavier_initializer(seed=1))
WR = np.append(WR, weights)
BR = np.append(BR, bias)
def receiver(in_symbols):
layer = []
for n_rx in range(1, rx_layers + 1):
if n_rx == 1:
layer = tf.nn.relu(tf.add(tf.matmul(WR[n_rx - 1], in_symbols), BR[n_rx - 1])) # input layer
elif n_rx < rx_layers:
layer = tf.nn.relu(tf.add(tf.matmul(WR[n_rx - 1], layer), BR[n_rx - 1])) # input layer
else:
layer = tf.nn.softmax(tf.add(tf.matmul(WR[n_rx - 1], layer), BR[n_rx - 1]), 0) # output layer
return layer
def normalization(in_message): # normalize average energy to 1
m = tf.size(in_message[0, :])
square = tf.square(in_message)
inverse_m = 1 / m
inverse_m = tf.cast(inverse_m, tf.float64)
E_abs = inverse_m * tf.reduce_sum(square)
power_norm = tf.sqrt(E_abs) # average power per message
y = in_message / power_norm # average power per message normalized to 1
return y
def power_constrain(signal_power_dBm, in_message):
P_in_W = 10 ** (signal_power_dBm / 10) / 1000 # W
P_in = tf.cast(P_in_W, tf.float64)
out_put = tf.sqrt(P_in) * in_message
return out_put
def compute_loss(prob_distribution, labels):
loss = -tf.reduce_mean(tf.reduce_sum(tf.log(prob_distribution + epsilon) * labels, 0))
return loss
def perturbation(input_signal):
rows = tf.shape(input_signal)[0]
columns = tf.shape(input_signal)[1]
noise = tf.random_normal([rows, columns], mean=0.0, stddev=sigma_pi, dtype=tf.float64, seed=None, name=None)
perturbed_signal = input_signal + noise # add perturbation so as to do exploration
return perturbed_signal
def compute_per_sample_loss(prob_distribution, labels):
# this is actually the receiver, use the same training set as receiver, so that it knows what message is transmitted
sample_loss = -tf.reduce_sum(tf.log(prob_distribution + epsilon) * labels, 0)
return sample_loss
def policy_function(X_p, transmitter_output): # problem occurs in this function
gaussian_norm = tf.add(tf.square(X_p[0] - transmitter_output[0]), tf.square(X_p[1] - transmitter_output[1]))
sigma_pi_square = tf.cast(tf.square(sigma_pi), 'float64')
pi_theta = tf.multiply(tf.divide(1, np.multiply(np.pi, sigma_pi_square)),
tf.exp(-tf.divide(gaussian_norm, sigma_pi_square)))
return pi_theta
def fiber_channel(noise_variance, channel_input):
num_inputs = tf.shape(channel_input)[1]
channel_output = channel_input
sigma_n = tf.cast(noise_variance, tf.float64)
for k in range(1, K + 1):
xr = channel_output[0, :]
xi = channel_output[1, :]
xr = tf.reshape(xr, [1, num_inputs])
xi = tf.reshape(xi, [1, num_inputs])
theta0 = gamma * L * (xr ** 2 + xi ** 2) / K
theta = tf.cast(theta0, tf.float64)
r1 = xr * tf.cos(theta) - xi * tf.sin(theta)
r2 = xr * tf.sin(theta) + xi * tf.cos(theta)
r = tf.concat([r1, r2], 0)
noise = tf.random_normal([2, num_inputs], mean=0.0, stddev=sigma_n, dtype=tf.float64)
channel_output = r + noise
return channel_output
def uniform_quantizer(in_samples, in_partition):
temp = np.zeros(in_samples.shape)
for i in range(0, in_partition.size):
temp = temp + (in_samples > in_partition[i])
temp = temp.astype(int)
return temp
def uniform_de_quantizer(in_indexes, in_codebook):
in_indexes = in_indexes.astype(int)
quantized_value = in_codebook[in_indexes]
return quantized_value
def int2bin(in_array, n_bits):
temp_rep = ((in_array[:, None] & (1 << np.arange(n_bits))) > 0).astype(int)
return temp_rep
def bin2int(in_array):
[rows, columns] = in_array.shape
temp_int = np.zeros(rows)
for column in np.arange(columns):
temp_int += in_array[:, column] * 2**column
return temp_int.astype(int)
MESSAGES = tf.placeholder('float64', [M, None])
LABELS = tf.placeholder('float64', [M, None])
INPUT_POWER = tf.placeholder('float64', [1])
encoded_signals = transmitter(MESSAGES)
normalized_signals = normalization(encoded_signals)
# Train receiver:
R_power_cons_signals = power_constrain(INPUT_POWER, normalized_signals)
R_received_signals = fiber_channel(sigma, R_power_cons_signals)
RECEIVED_SIGNALS = tf.placeholder('float64', [2, None])
R_probability_distribution = receiver(RECEIVED_SIGNALS)
cross_entropy = compute_loss(R_probability_distribution, LABELS)
Rec_Var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Receiver')
receiver_optimizer = tf.train.AdamOptimizer(learning_rate=lr_receiver).minimize(cross_entropy, var_list=Rec_Var_list)
# Train Transmitter
perturbed_signals = perturbation(normalized_signals) # action taken by the agent (transmitter)
PERTURBED_SIGNALS = tf.placeholder('float64', [2, None])
T_power_cons_signals = power_constrain(INPUT_POWER, PERTURBED_SIGNALS)
T_received_signals = fiber_channel(sigma, T_power_cons_signals)
T_probability_distribution = receiver(T_received_signals)
per_sample_loss = compute_per_sample_loss(T_probability_distribution, LABELS) # constant per_sample_loss
SAMPLE_LOSS = tf.placeholder('float64', [1, None])
policy = policy_function(PERTURBED_SIGNALS, normalized_signals)
reward_function = tf.reduce_mean(tf.multiply(SAMPLE_LOSS, tf.log(policy)))
Tran_Var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Transmitter')
transmitter_optimizer = tf.train.AdamOptimizer(learning_rate=lr_transmitter).minimize(reward_function,
var_list=Tran_Var_list)
Main_loops = 4000
batch_size = 64
tran_loops = 20
rec_loops = 30
print('M=', M)
print('Noise power: ', P_noise_dBm, 'dBm')
num_bits = 1
uniform_partition = np.arange(1, 2 ** num_bits) / 2 ** num_bits
uniform_codebook = np.arange(0, 2 ** num_bits) / 2 ** num_bits + 0.5 / 2 ** num_bits
print('codebook:',uniform_codebook)
BLER = []
SNR = np.arange(-15, 0)
for input_power in SNR:
print('\n')
P_in_dBm = np.array([input_power])
print('Input power: ', input_power, ' dBm')
print('SNR = ', input_power - P_noise_dBm, 'dB')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for loop in range(0, Main_loops):
train_samples = np.copy(one_hot_labels)
train_samples = np.tile(train_samples, rec_loops * batch_size)
rec_sig = sess.run(R_received_signals,
feed_dict={INPUT_POWER: P_in_dBm, MESSAGES: train_samples}) # constant samples to train receiver
for train_receiver_iteration in range(0, rec_loops):
indexes = np.arange(train_receiver_iteration * batch_size * M,
(train_receiver_iteration + 1) * batch_size * M)
label_batch = np.copy(train_samples[:, indexes])
message_batch = np.copy(rec_sig[:, indexes])
Cross_entropy, _ = sess.run([cross_entropy, receiver_optimizer],
feed_dict={RECEIVED_SIGNALS: message_batch, LABELS: label_batch})
for train_transmitter_iteration in range(0, tran_loops):
label_batch = np.copy(one_hot_labels)
label_batch = np.tile(label_batch, 64)
perturbed_sig = sess.run(perturbed_signals, feed_dict={MESSAGES: label_batch}) # action is constant
sample_loss_constant = sess.run(per_sample_loss,
feed_dict={INPUT_POWER: P_in_dBm, PERTURBED_SIGNALS: perturbed_sig,
LABELS: label_batch})
new_sample_loss = np.sort(sample_loss_constant)
boundary_indx = int(0.95 * new_sample_loss.size)
sample_loss_constant[sample_loss_constant > new_sample_loss[boundary_indx]] = new_sample_loss[boundary_indx]
scaled_sample_loss = (sample_loss_constant - np.min(sample_loss_constant)) / np.max(
sample_loss_constant - np.min(sample_loss_constant))
indexes_quantized_sample_loss = uniform_quantizer(scaled_sample_loss, uniform_partition)
bin_indexes = int2bin(indexes_quantized_sample_loss, num_bits)
int_indexes = bin2int(bin_indexes)
rec_quantized_sample_loss = uniform_de_quantizer(int_indexes, uniform_codebook)
rec_quantized_sample_loss.shape = [1, rec_quantized_sample_loss.size]
Reward_function, _ = sess.run([reward_function, transmitter_optimizer],
feed_dict={MESSAGES: label_batch,
PERTURBED_SIGNALS: perturbed_sig,
SAMPLE_LOSS: rec_quantized_sample_loss})
if loop == Main_loops - 1:
train_samples = np.copy(one_hot_labels)
train_samples = np.tile(train_samples, rec_loops * 640)
rec_sig = sess.run(R_received_signals,
feed_dict={INPUT_POWER: P_in_dBm,
MESSAGES: train_samples}) # constant samples to train receiver
for train_receiver_iteration in range(0, rec_loops):
indexes = np.arange(train_receiver_iteration * 640 * M,
(train_receiver_iteration + 1) * 640 * M)
label_batch = np.copy(train_samples[:, indexes])
message_batch = np.copy(rec_sig[:, indexes])
Cross_entropy, _ = sess.run([cross_entropy, receiver_optimizer],
feed_dict={RECEIVED_SIGNALS: message_batch, LABELS: label_batch})
for train_transmitter_iteration in range(0, tran_loops):
label_batch = np.copy(one_hot_labels)
label_batch = np.tile(label_batch, 640)
perturbed_sig = sess.run(perturbed_signals, feed_dict={MESSAGES: label_batch}) # action is constant
sample_loss_constant = sess.run(per_sample_loss,
feed_dict={INPUT_POWER: P_in_dBm, PERTURBED_SIGNALS: perturbed_sig,
LABELS: label_batch})
new_sample_loss = np.sort(sample_loss_constant)
boundary_indx = int(0.95 * new_sample_loss.size)
sample_loss_constant[sample_loss_constant > new_sample_loss[boundary_indx]] = new_sample_loss[
boundary_indx]
scaled_sample_loss = (sample_loss_constant - np.min(sample_loss_constant)) / np.max(
sample_loss_constant - np.min(sample_loss_constant))
indexes_quantized_sample_loss = uniform_quantizer(scaled_sample_loss, uniform_partition)
bin_indexes = int2bin(indexes_quantized_sample_loss, num_bits)
int_indexes = bin2int(bin_indexes)
rec_quantized_sample_loss = uniform_de_quantizer(int_indexes, uniform_codebook)
rec_quantized_sample_loss.shape = [1, rec_quantized_sample_loss.size]
Reward_function, _ = sess.run([reward_function, transmitter_optimizer],
feed_dict={MESSAGES: label_batch,
PERTURBED_SIGNALS: perturbed_sig,
SAMPLE_LOSS: rec_quantized_sample_loss})
train_samples = np.copy(one_hot_labels)
train_samples = np.tile(train_samples, rec_loops * 640)
rec_sig = sess.run(R_received_signals,
feed_dict={INPUT_POWER: P_in_dBm,
MESSAGES: train_samples}) # constant samples to train receiver
for train_receiver_iteration in range(0, rec_loops):
indexes = np.arange(train_receiver_iteration * 640 * M,
(train_receiver_iteration + 1) * 640 * M)
label_batch = np.copy(train_samples[:, indexes])
message_batch = np.copy(rec_sig[:, indexes])
Cross_entropy, _ = sess.run([cross_entropy, receiver_optimizer],
feed_dict={RECEIVED_SIGNALS: message_batch, LABELS: label_batch})
message = np.copy(messages)
message = np.tile(message, 100000)
one_hot_message = np.tile(one_hot_labels, 100000)
received_signals = sess.run(R_received_signals, feed_dict={INPUT_POWER: P_in_dBm, MESSAGES: one_hot_message})
probability_distribution = sess.run(R_probability_distribution, feed_dict={RECEIVED_SIGNALS: received_signals})
classification = np.argmax(probability_distribution, axis=0)
correct = np.equal(classification + 1, message)
SER = 1 - np.mean(correct)
print('SER = ', SER)
BLER = np.append(BLER, SER)
np.savetxt('SER_with_1bit_quantized', BLER)
pl.figure()
pl.semilogy(SNR, BLER)
pl.grid()
pl.xlabel('SNR')
pl.ylabel('Symbol_Error_Rate')
pl.savefig('SER')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。