1 Star 0 Fork 0

zhoub86/PAPRnet

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
convcode.py 21.01 KB
一键复制 编辑 原始数据 按行查看 历史
Shahruk Hossain 提交于 2019-04-13 09:52 . initial commit
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
# Authors: Veeresh Taranalli <veeresht@gmail.com>
# License: BSD 3-Clause
""" Algorithms for Convolutional Codes """
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
import matplotlib.patches as mpatches
from commpy.utilities import dec2bitarray, bitarray2dec, hamming_dist, euclid_dist
#from commpy.channelcoding.acstb import acs_traceback
__all__ = ['Trellis', 'conv_encode', 'viterbi_decode']
class Trellis:
"""
Class defining a Trellis corresponding to a k/n - rate convolutional code.
Parameters
----------
memory : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
g_matrix : 2D ndarray of ints (octal representation)
Generator matrix G(D) of the convolutional encoder. Each element of
G(D) represents a polynomial.
feedback : int, optional
Feedback polynomial of the convolutional encoder. Default value is 00.
code_type : {'default', 'rsc'}, optional
Use 'rsc' to generate a recursive systematic convolutional code.
If 'rsc' is specified, then the first 'k x k' sub-matrix of
G(D) must represent a identity matrix along with a non-zero
feedback polynomial.
Attributes
----------
k : int
Size of the smallest block of input bits that can be encoded using
the convolutional code.
n : int
Size of the smallest block of output bits generated using
the convolutional code.
total_memory : int
Total number of delay elements needed to implement the convolutional
encoder.
number_states : int
Number of states in the convolutional code trellis.
number_inputs : int
Number of branches from each state in the convolutional code trellis.
next_state_table : 2D ndarray of ints
Table representing the state transition matrix of the
convolutional code trellis. Rows represent current states and
columns represent current inputs in decimal. Elements represent the
corresponding next states in decimal.
output_table : 2D ndarray of ints
Table representing the output matrix of the convolutional code trellis.
Rows represent current states and columns represent current inputs in
decimal. Elements represent corresponding outputs in decimal.
Examples
--------
>>> from numpy import array
>>> import commpy.channelcoding.convcode as cc
>>> memory = array([2])
>>> g_matrix = array([[0o5, 0o7]]) # G(D) = [1+D^2, 1+D+D^2]
>>> trellis = cc.Trellis(memory, g_matrix)
>>> print trellis.k
1
>>> print trellis.n
2
>>> print trellis.total_memory
2
>>> print trellis.number_states
4
>>> print trellis.number_inputs
2
>>> print trellis.next_state_table
[[0 2]
[0 2]
[1 3]
[1 3]]
>>>print trellis.output_table
[[0 3]
[3 0]
[1 2]
[2 1]]
"""
def __init__(self, memory, g_matrix, feedback = 0, code_type = 'default'):
[self.k, self.n] = g_matrix.shape
if code_type == 'rsc':
for i in range(self.k):
g_matrix[i][i] = feedback
self.total_memory = memory.sum()
self.number_states = pow(2, self.total_memory)
self.number_inputs = pow(2, self.k)
self.next_state_table = np.zeros([self.number_states,
self.number_inputs], 'int')
self.output_table = np.zeros([self.number_states,
self.number_inputs], 'int')
# Compute the entries in the next state table and the output table
for current_state in range(self.number_states):
for current_input in range(self.number_inputs):
outbits = np.zeros(self.n, 'int')
# Compute the values in the output_table
for r in range(self.n):
output_generator_array = np.zeros(self.k, 'int')
shift_register = dec2bitarray(current_state,
self.total_memory)
for l in range(self.k):
# Convert the number representing a polynomial into a
# bit array
generator_array = dec2bitarray(g_matrix[l][r],
memory[l]+1)
# Loop over M delay elements of the shift register
# to compute their contribution to the r-th output
for i in range(memory[l]):
outbits[r] = (outbits[r] + \
(shift_register[i+l]*generator_array[i+1])) % 2
output_generator_array[l] = generator_array[0]
if l == 0:
feedback_array = (dec2bitarray(feedback, memory[l]) * shift_register[0:memory[l]]).sum()
shift_register[1:memory[l]] = \
shift_register[0:memory[l]-1]
shift_register[0] = (dec2bitarray(current_input,
self.k)[0] + feedback_array) % 2
else:
feedback_array = (dec2bitarray(feedback, memory[l]) *
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-1]).sum()
shift_register[l+memory[l-1]:l+memory[l-1]+memory[l]-1] = \
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-2]
shift_register[l+memory[l-1]-1] = \
(dec2bitarray(current_input, self.k)[l] + feedback_array) % 2
# Compute the contribution of the current_input to output
outbits[r] = (outbits[r] + \
(np.sum(dec2bitarray(current_input, self.k) * \
output_generator_array + feedback_array) % 2)) % 2
# Update the ouput_table using the computed output value
self.output_table[current_state][current_input] = \
bitarray2dec(outbits)
# Update the next_state_table using the new state of
# the shift register
self.next_state_table[current_state][current_input] = \
bitarray2dec(shift_register)
def _generate_grid(self, trellis_length):
""" Private method """
grid = np.mgrid[0.12:0.22*trellis_length:(trellis_length+1)*(0+1j),
0.1:0.1+self.number_states*0.1:self.number_states*(0+1j)].reshape(2, -1)
return grid
def _generate_states(self, trellis_length, grid, state_order, state_radius, font):
""" Private method """
state_patches = []
for state_count in range(self.number_states * trellis_length):
state_patch = mpatches.Circle(grid[:,state_count], state_radius,
color="#003399", ec="#cccccc")
state_patches.append(state_patch)
plt.text(grid[0, state_count], grid[1, state_count]-0.02,
str(state_order[state_count % self.number_states]),
ha="center", family=font, size=20, color="#ffffff")
return state_patches
def _generate_edges(self, trellis_length, grid, state_order, state_radius, edge_colors):
""" Private method """
edge_patches = []
for current_time_index in range(trellis_length-1):
grid_subset = grid[:,self.number_states * current_time_index:]
for state_count_1 in range(self.number_states):
input_count = 0
for state_count_2 in range(self.number_states):
dx = grid_subset[0, state_count_2+self.number_states] - grid_subset[0,state_count_1] - 2*state_radius
dy = grid_subset[1, state_count_2+self.number_states] - grid_subset[1,state_count_1]
if np.count_nonzero(self.next_state_table[state_order[state_count_1],:] == state_order[state_count_2]):
found_index = np.where(self.next_state_table[state_order[state_count_1],:] ==
state_order[state_count_2])
edge_patch = mpatches.FancyArrow(grid_subset[0,state_count_1]+state_radius,
grid_subset[1,state_count_1], dx, dy, width=0.005,
length_includes_head = True, color = edge_colors[found_index[0][0]])
edge_patches.append(edge_patch)
input_count = input_count + 1
return edge_patches
def _generate_labels(self, grid, state_order, state_radius, font):
""" Private method """
for state_count in range(self.number_states):
for input_count in range(self.number_inputs):
edge_label = str(input_count) + "/" + str(
self.output_table[state_order[state_count], input_count])
plt.text(grid[0, state_count]-1.5*state_radius,
grid[1, state_count]+state_radius*(1-input_count-0.7),
edge_label, ha="center", family=font, size=14)
def visualize(self, trellis_length = 2, state_order = None,
state_radius = 0.04, edge_colors = None):
""" Plot the trellis diagram.
Parameters
----------
trellis_length : int, optional
Specifies the number of time steps in the trellis diagram.
Default value is 2.
state_order : list of ints, optional
Specifies the order in the which the states of the trellis
are to be displayed starting from the top in the plot.
Default order is [0,...,number_states-1]
state_radius : float, optional
Radius of each state (circle) in the plot.
Default value is 0.04
edge_colors = list of hex color codes, optional
A list of length equal to the number_inputs,
containing color codes that represent the edge corresponding
to the input.
"""
if edge_colors is None:
edge_colors = ["#9E1BE0", "#06D65D"]
if state_order is None:
state_order = list(range(self.number_states))
font = "sans-serif"
fig = plt.figure()
ax = plt.axes([0,0,1,1])
trellis_patches = []
state_order.reverse()
trellis_grid = self._generate_grid(trellis_length)
state_patches = self._generate_states(trellis_length, trellis_grid,
state_order, state_radius, font)
edge_patches = self._generate_edges(trellis_length, trellis_grid,
state_order, state_radius,
edge_colors)
self._generate_labels(trellis_grid, state_order, state_radius, font)
trellis_patches.extend(state_patches)
trellis_patches.extend(edge_patches)
collection = PatchCollection(trellis_patches, match_original=True)
ax.add_collection(collection)
ax.set_xticks([])
ax.set_yticks([])
#plt.legend([edge_patches[0], edge_patches[1]], ["1-input", "0-input"])
plt.show()
def conv_encode(message_bits, trellis, code_type = 'default', puncture_matrix=None):
"""
Encode bits using a convolutional code.
Parameters
----------
message_bits : 1D ndarray containing {0, 1}
Stream of bits to be convolutionally encoded.
generator_matrix : 2-D ndarray of ints
Generator matrix G(D) of the convolutional code using which the input
bits are to be encoded.
M : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
Returns
-------
coded_bits : 1D ndarray containing {0, 1}
Encoded bit stream.
"""
k = trellis.k
n = trellis.n
total_memory = trellis.total_memory
rate = float(k)/n
if puncture_matrix is None:
puncture_matrix = np.ones((trellis.k, trellis.n))
number_message_bits = np.size(message_bits)
# Initialize an array to contain the message bits plus the truncation zeros
if code_type == 'default':
inbits = np.zeros(number_message_bits + total_memory + total_memory % k,
'int')
number_inbits = number_message_bits + total_memory + total_memory % k
# Pad the input bits with M zeros (L-th terminated truncation)
inbits[0:number_message_bits] = message_bits
number_outbits = int(number_inbits/rate)
else:
inbits = message_bits
number_inbits = number_message_bits
number_outbits = int((number_inbits + total_memory)/rate)
outbits = np.zeros(number_outbits, 'int')
p_outbits = np.zeros(int(number_outbits*
puncture_matrix[0:].sum()/np.size(puncture_matrix, 1)), 'int')
next_state_table = trellis.next_state_table
output_table = trellis.output_table
# Encoding process - Each iteration of the loop represents one clock cycle
current_state = 0
j = 0
for i in range(int(number_inbits/k)): # Loop through all input bits
current_input = bitarray2dec(inbits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
if code_type == 'rsc':
term_bits = dec2bitarray(current_state, trellis.total_memory)
term_bits = term_bits[::-1]
for i in range(trellis.total_memory):
current_input = bitarray2dec(term_bits[i*k:(i+1)*k])
current_output = output_table[current_state][current_input]
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
current_state = next_state_table[current_state][current_input]
j += 1
j = 0
for i in range(number_outbits):
if puncture_matrix[0][i % np.size(puncture_matrix, 1)] == 1:
p_outbits[j] = outbits[i]
j = j + 1
return p_outbits
def _where_c(inarray, rows, cols, search_value, index_array):
#cdef int i, j,
number_found = 0
for i in range(rows):
for j in range(cols):
if inarray[i, j] == search_value:
index_array[number_found, 0] = i
index_array[number_found, 1] = j
number_found += 1
return number_found
def _acs_traceback(r_codeword, trellis, decoding_type,
path_metrics, paths, decoded_symbols,
decoded_bits, tb_count, t, count,
tb_depth, current_number_states):
#cdef int state_num, i, j, number_previous_states, previous_state, \
# previous_input, i_codeword, number_found, min_idx, \
# current_state, dec_symbol
k = trellis.k
n = trellis.n
number_states = trellis.number_states
number_inputs = trellis.number_inputs
branch_metric = 0.0
next_state_table = trellis.next_state_table
output_table = trellis.output_table
pmetrics = np.empty(number_inputs)
i_codeword_array = np.empty(n, 'int')
index_array = np.empty([number_states, 2], 'int')
decoded_bitarray = np.empty(k, 'int')
# Loop over all the current states (Time instant: t)
for state_num in range(current_number_states):
# Using the next state table find the previous states and inputs
# leading into the current state (Trellis)
number_found = _where_c(next_state_table, number_states, number_inputs, state_num, index_array)
# Loop over all the previous states (Time instant: t-1)
for i in range(number_found):
previous_state = index_array[i, 0]
previous_input = index_array[i, 1]
# Using the output table, find the ideal codeword
i_codeword = output_table[previous_state, previous_input]
#dec2bitarray_c(i_codeword, n, i_codeword_array)
i_codeword_array = dec2bitarray(i_codeword, n)
# Compute Branch Metrics
if decoding_type == 'hard':
#branch_metric = hamming_dist_c(r_codeword.astype(int), i_codeword_array.astype(int), n)
branch_metric = hamming_dist(r_codeword.astype(int), i_codeword_array.astype(int))
elif decoding_type == 'soft':
pass
elif decoding_type == 'unquantized':
i_codeword_array = 2*i_codeword_array - 1
branch_metric = euclid_dist(r_codeword, i_codeword_array)
else:
pass
# ADD operation: Add the branch metric to the
# accumulated path metric and store it in the temporary array
pmetrics[i] = path_metrics[previous_state, 0] + branch_metric
# COMPARE and SELECT operations
# Compare and Select the minimum accumulated path metric
path_metrics[state_num, 1] = pmetrics.min()
# Store the previous state corresponding to the minimum
# accumulated path metric
min_idx = pmetrics.argmin()
paths[state_num, tb_count] = index_array[min_idx, 0]
# Store the previous input corresponding to the minimum
# accumulated path metric
decoded_symbols[state_num, tb_count] = index_array[min_idx, 1]
if t >= tb_depth - 1:
current_state = path_metrics[:,1].argmin()
# Traceback Loop
for j in reversed(range(1, tb_depth)):
dec_symbol = decoded_symbols[current_state, j]
previous_state = paths[current_state, j]
decoded_bitarray = dec2bitarray(dec_symbol, k)
decoded_bits[(t-tb_depth-1)+(j+1)*k+count:(t-tb_depth-1)+(j+2)*k+count] = \
decoded_bitarray
current_state = previous_state
paths[:,0:tb_depth-1] = paths[:,1:]
decoded_symbols[:,0:tb_depth-1] = decoded_symbols[:,1:]
def viterbi_decode(coded_bits, trellis, tb_depth=None, decoding_type='hard'):
"""
Decodes a stream of convolutionally encoded bits using the Viterbi Algorithm
Parameters
----------
coded_bits : 1D ndarray
Stream of convolutionally encoded bits which are to be decoded.
generator_matrix : 2D ndarray of ints
Generator matrix G(D) of the convolutional code using which the
input bits are to be decoded.
M : 1D ndarray of ints
Number of memory elements per input of the convolutional encoder.
tb_length : int
Traceback depth (Typically set to 5*(M+1)).
decoding_type : str {'hard', 'unquantized'}
The type of decoding to be used.
'hard' option is used for hard inputs (bits) to the decoder, e.g., BSC channel.
'unquantized' option is used for soft inputs (real numbers) to the decoder, e.g., BAWGN channel.
Returns
-------
decoded_bits : 1D ndarray
Decoded bit stream.
References
----------
.. [1] Todd K. Moon. Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley and Sons, 2005.
"""
# k = Rows in G(D), n = columns in G(D)
k = trellis.k
n = trellis.n
rate = float(k)/n
total_memory = trellis.total_memory
number_states = trellis.number_states
number_inputs = trellis.number_inputs
if tb_depth is None:
tb_depth = 5*total_memory
next_state_table = trellis.next_state_table
output_table = trellis.output_table
# Number of message bits after decoding
L = int(len(coded_bits)*rate)
path_metrics = np.empty([number_states, 2])
path_metrics[:, :] = 1000000
path_metrics[0][0] = 0
paths = np.empty([number_states, tb_depth], 'int')
paths[:, :] = 1000000
paths[0][0] = 0
decoded_symbols = np.zeros([number_states, tb_depth], 'int')
decoded_bits = np.zeros(L+tb_depth+k, 'int')
r_codeword = np.zeros(n, 'int')
tb_count = 1
count = 0
current_number_states = number_states
for t in range(1, int((L+total_memory+total_memory%k)/k) + 1):
# Get the received codeword corresponding to t
if t <= L:
r_codeword = coded_bits[(t-1)*n:t*n]
else:
if decoding_type == 'hard':
r_codeword[:] = 0
elif decoding_type == 'soft':
pass
elif decoding_type == 'unquantized':
r_codeword[:] = 0
r_codeword = 2*r_codeword - 1
else:
pass
_acs_traceback(r_codeword, trellis, decoding_type, path_metrics, paths,
decoded_symbols, decoded_bits, tb_count, t, count, tb_depth,
current_number_states)
if t >= tb_depth - 1:
tb_count = tb_depth - 1
count = count + k - 1
else:
tb_count = tb_count + 1
# Path metrics (at t-1) = Path metrics (at t)
path_metrics[:, 0] = path_metrics[:, 1]
# Force all the paths back to '0' state at the end of decoding
if t == (L+total_memory+total_memory%k)/k:
current_number_states = 1
return decoded_bits[0:len(decoded_bits)-tb_depth-1]
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhoub86/PAPRnet.git
git@gitee.com:zhoub86/PAPRnet.git
zhoub86
PAPRnet
PAPRnet
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385