代码拉取完成,页面将自动刷新
import numpy as np
import keras
from keras.layers import Input, LSTM,Dense,GaussianNoise, Lambda, Dropout, embeddings,Flatten
from keras.models import Model
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam, SGD
from keras import backend as K
from keras.utils.np_utils import to_categorical
#set the random state to generate the same/different train data
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(3)
M = 4
# k = np.log2(M)
# k = int(k)
k = 4
n_channel = 2
R = k / n_channel
print('M:', M, 'k:', k, 'n:', n_channel)
#generating train data
N = 10000
label = np.random.randint(M, size = N)
label_out = label.reshape((-1,1))
#defining an auto encoder
input_signal = Input( shape = (1, ) )
encoded = embeddings.Embedding(input_dim=M, output_dim = k,input_length= 1 )(input_signal)
encoded1 = Flatten()(encoded)
encoded2 = Dense(M,activation= 'relu')(encoded1)
#encoded2 = LSTM(n_channel, dropout=0.2, recurrent_dropout=0.2)(encoded)
encoded3 = Dense(n_channel, activation= 'linear')(encoded2)
#encoded4 = Lambda(lambda x: np.sqrt(n_channel)* K.l2_normalize(x, axis=1))(encoded3)
encoded4 = Lambda(lambda x: np.sqrt(n_channel) * K.l2_normalize(x, axis=1))(encoded3)
EbNodB_train = 7
EbNo_train = 10 ** (EbNodB_train / 10.0)
# EbNo_train = 5.01187
channel_out = GaussianNoise(np.sqrt(1 / (2 * R * EbNo_train)))(encoded4)
decoded = Dense(M, activation='relu')(channel_out)
decoded1 = Dense(M, activation='softmax')(decoded)
#decoded1 = Dense(M, activation= 'sigmoid')(decoded)
#?? why softmax?
auto_encoder_embedding = Model(input_signal, decoded1)
adam= Adam(lr= 0.01)
auto_encoder_embedding.compile(optimizer= adam,
loss= 'sparse_categorical_crossentropy',
)
print(auto_encoder_embedding.summary())
auto_encoder_embedding.fit(label, label_out,
epochs=45,
batch_size=32)
encoder = Model(input_signal, encoded4)
encoded_input = Input(shape=(n_channel,))
deco = auto_encoder_embedding.layers[-2](encoded_input)
deco = auto_encoder_embedding.layers[-1](deco)
decoder = Model(encoded_input, deco)
#generating test data
N = 50000
test_label = np.random.randint(M, size=N)
test_label_out = test_label.reshape((-1,1))
#plotting constellation diagram
scatter_plot = []
for i in range (0,M):
scatter_plot.append(encoder.predict(np.expand_dims(i, axis=0)))
scatter_plot = np.array(scatter_plot)
print(scatter_plot.shape)
import matplotlib.pyplot as plt
scatter_plot = scatter_plot.reshape(M, 2, 1)
plt.scatter(scatter_plot[:, 0], scatter_plot[:, 1])
#plt.axis((-2.5, 2.5, -2.5, 2.5))
plt.grid()
plt.show()
# use this function for ploting constellation for higher dimenson like 7-D for (7,4) autoencoder
'''
x_emb = encoder.predict(test_data)
noise_std = np.sqrt(1/(2*R*EbNo_train))
noise = noise_std * np.random.randn(N,n_channel)
x_emb = x_emb + noise
from sklearn.manifold import TSNE
X_embedded = TSNE(learning_rate=700, n_components=2,n_iter=35000, random_state=0, perplexity=60).fit_transform(x_emb)
print (X_embedded.shape)
X_embedded = X_embedded / 7
import matplotlib.pyplot as plt
plt.scatter(X_embedded[:,0],X_embedded[:,1])
#plt.axis((-2.5,2.5,-2.5,2.5))
plt.grid()
plt.show()
'''
#ccalculating BER
EbNodB_range = list(np.linspace(-4, 8.5 ,26))
ber = [None] * len(EbNodB_range)
for n in range(0, len(EbNodB_range)):
EbNo = 10 ** (EbNodB_range[n] / 10.0)
noise_std = np.sqrt(1 / (2 * R * EbNo))
noise_mean = 0
no_errors = 0
nn = N
noise = noise_std * np.random.randn(nn, n_channel)
encoded_signal = encoder.predict(test_label)
final_signal = encoded_signal + noise
pred_final_signal = decoder.predict(final_signal)
pred_output = np.argmax(pred_final_signal, axis=1)
no_errors = (pred_output != test_label)
no_errors = no_errors.astype(int).sum()
ber[n] = no_errors/nn
print('SNR:', EbNodB_range[n], 'BER:', ber[n])
plt.plot(EbNodB_range, ber,'bo', label='Autoencoeder_embedding(K_4)')
plt.yscale('log')
plt.xlabel('SNR_RANGE')
plt.ylabel('Block Error Rate')
plt.grid()
plt.legend(loc='upper right',ncol= 1)
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。