1 Star 1 Fork 0

zhoub86/ML-in-physical-layer

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
TwoUserSNRtest.py 961 Bytes
一键复制 编辑 原始数据 按行查看 历史
FassyGit 提交于 2018-04-01 11:07 . Two User Basic Model Unfinished Yet
from TwoUserBasicModel import TwoUserEncoder
import matplotlib.pyplot as plt
import numpy as np
M= 4
n_channel = 2
k=2
emb_k=4
u1_EbNodB_train=7
u2_EbNodB_train=7
train_datasize=10000
alpha=0.5
beta=0.5
bertest_data_size=50000
EbNodB_low=0
EbNodB_high=14
EbNodB_num=28
EbNodB_range = list(np.linspace(EbNodB_low, EbNodB_high, EbNodB_num))
testmodel = TwoUserEncoder(ComplexChannel=True,M=M,n_channel=n_channel,
k=k,emb_k=emb_k,
u1_EbNodB_train=u1_EbNodB_train,
u2_EbNodB_train=u2_EbNodB_train,
train_datasize=train_datasize,
alpha=alpha,beta=beta)
testmodel.Initialize()
testmodel.CalBLER(bertest_data_size=bertest_data_size,
EbNodB_low=EbNodB_low,
EbNodB_high=EbNodB_high,
EbNodB_num=EbNodB_num)
plt.plot(EbNodB_range, testmodel.ber ,label = 'TwoUserSNR(2,2),emb_k=4,')
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhoub86/ML-in-physical-layer.git
git@gitee.com:zhoub86/ML-in-physical-layer.git
zhoub86
ML-in-physical-layer
ML-in-physical-layer
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385