1 Star 1 Fork 0

zhoub86/ML-in-physical-layer

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
AutoEncoder_embedding_trainSNR.py 4.34 KB
一键复制 编辑 原始数据 按行查看 历史
FassyGit 提交于 2018-03-10 16:10 . High Dimensional
#This code is used for testing the influence of the SNR in training phase
import numpy as np
import keras
from keras.layers import Input, LSTM,Dense,GaussianNoise, Lambda, Dropout, embeddings,Flatten
from keras.models import Model
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam, SGD
from keras import backend as K
from keras.utils.np_utils import to_categorical
#set the random state to generate the same/different train data
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(3)
M = 4
k = np.log2(M)
k = int(k)
emb_k = 2
n_channel = 2
R = k / n_channel
print('M:', M, 'emb_k',emb_k, 'k:', k, 'n:', n_channel)
#generating train data
N = 10000
label = np.random.randint(M, size = N)
label_out = label.reshape((-1,1))
# Embedding Layer
input_signal = Input( shape = (1, ) )
encoded = embeddings.Embedding(input_dim=M, output_dim = k,input_length= 1 )(input_signal)
encoded1 = Flatten()(encoded)
encoded2 = Dense(M,activation= 'relu')(encoded1)
encoded3 = Dense(n_channel, activation= 'linear')(encoded2)
encoded4 = Lambda(lambda x: np.sqrt(n_channel) * K.l2_normalize(x, axis=1))(encoded3)
EbNodB_train = 7
EbNo_train = 10 ** (EbNodB_train / 10.0)
# EbNo_train = 5.01187
channel_out = GaussianNoise(np.sqrt(1 / (2 * R * EbNo_train)))(encoded4)
decoded = Dense(M, activation='relu')(channel_out)
decoded1 = Dense(M, activation='softmax')(decoded)
#decoded1 = Dense(M, activation= 'sigmoid')(decoded)
#?? why softmax?
auto_encoder_embedding = Model(input_signal, decoded1)
adam= Adam(lr= 0.01)
auto_encoder_embedding.compile(optimizer= adam,
loss= 'sparse_categorical_crossentropy',
)
print(auto_encoder_embedding.summary())
auto_encoder_embedding.fit(label, label_out,
epochs=45,
batch_size=32)
encoder = Model(input_signal, encoded4)
encoded_input = Input(shape=(n_channel,))
deco = auto_encoder_embedding.layers[-2](encoded_input)
deco = auto_encoder_embedding.layers[-1](deco)
decoder = Model(encoded_input, deco)
#generating test data
N = 50000
test_label = np.random.randint(M, size=N)
test_label_out = test_label.reshape((-1,1))
test_data = []
for i in test_label:
temp = np.zeros(M)
temp[i] = 1
test_data.append(temp)
test_data = np.array(test_data)
#plotting constellation diagram for embedding
scatter_plot = []
for i in range (0,M):
scatter_plot.append(encoder.predict(np.expand_dims(i, axis=0)))
scatter_plot = np.array(scatter_plot)
print(scatter_plot.shape)
import matplotlib.pyplot as plt
scatter_plot = scatter_plot.reshape(M, 2, 1)
plt.scatter(scatter_plot[:, 0], scatter_plot[:, 1])
plt.legend(['embedding_constellation(2,2),emb_k=2'],loc='upper left')
plt.axis((-2.5, 2.5, -2.5, 2.5))
plt.grid()
plt.show()
# use this function for ploting constellation for higher dimenson like 7-D for (7,4) autoencoder
'''
x_emb = encoder.predict(test_data)
noise_std = np.sqrt(1/(2*R*EbNo_train))
noise = noise_std * np.random.randn(N,n_channel)
x_emb = x_emb + noise
from sklearn.manifold import TSNE
X_embedded = TSNE(learning_rate=700, n_components=2,n_iter=35000, random_state=0, perplexity=60).fit_transform(x_emb)
print (X_embedded.shape)
X_embedded = X_embedded / 7
import matplotlib.pyplot as plt
plt.scatter(X_embedded[:,0],X_embedded[:,1])
#plt.axis((-2.5,2.5,-2.5,2.5))
plt.grid()
plt.show()
'''
#ccalculating BER for embedding
EbNodB_range = list(np.linspace(-4, 8.5 ,26))
ber = [None] * len(EbNodB_range)
for n in range(0, len(EbNodB_range)):
EbNo = 10 ** (EbNodB_range[n] / 10.0)
noise_std = np.sqrt(1 / (2 * R * EbNo))
noise_mean = 0
no_errors = 0
nn = N
noise = noise_std * np.random.randn(nn, n_channel)
encoded_signal = encoder.predict(test_label)
final_signal = encoded_signal + noise
pred_final_signal = decoder.predict(final_signal)
pred_output = np.argmax(pred_final_signal, axis=1)
no_errors = (pred_output != test_label)
no_errors = no_errors.astype(int).sum()
ber[n] = no_errors/nn
print('SNR:', EbNodB_range[n], 'BER:', ber[n])
plt.plot(EbNodB_range, ber )
plt.yscale('log')
plt.xlabel('SNR_RANGE')
plt.ylabel('Block Error Rate')
plt.grid()
plt.legend(['Autoencoeder_embedding(2,2),emb_k=2','Autoencoeder_onehot(2,2)'],loc = 'upper left')
plt.legend(loc='upper right',ncol= 1)
plt.show()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhoub86/ML-in-physical-layer.git
git@gitee.com:zhoub86/ML-in-physical-layer.git
zhoub86
ML-in-physical-layer
ML-in-physical-layer
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385