代码拉取完成,页面将自动刷新
#This code is written for testing the BER of onehot encoding and embedding layer when (n,k) is higher than 2
import numpy as np
import keras
from keras.layers import Input, LSTM,Dense,GaussianNoise, Lambda, Dropout, embeddings,Flatten
from keras.models import Model
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam, SGD
from keras import backend as K
from keras.utils.np_utils import to_categorical
#set the random state to generate the same/different train data
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(3)
M = 16
k_r = np.log2(M)
k_r = int(k_r)
k = 16
n_channel = 7
R = k_r / n_channel
print('M:', M, 'k:', k, 'n:', n_channel)
#generating train data
N = 10000
label = np.random.randint(M, size = N)
label_out = label.reshape((-1,1))
#defining an auto encoder
# creating one hot encoded vectors
data = []
for i in label:
temp = np.zeros(M)
temp[i] = 1
data.append(temp)
# checking data shape
data = np.array(data)
print(data.shape)
# checking generated data with it's label
temp_check = [17, 23, 45, 67, 89, 96, 72, 250, 350]
for i in temp_check:
print(label[i], data[i])
# defining autoencoder and it's layer (onehot)
input_signal = Input(shape=(M,))
encoded_n = Dense(M, activation='relu')(input_signal)
encoded1_n = Dense(n_channel, activation='linear')(encoded_n)
encoded2_n = Lambda(lambda x: np.sqrt(n_channel) * K.l2_normalize(x, axis=1))(encoded1_n)
"""
K.l2_mormalize 二阶约束(功率约束)
"""
EbNo_train = 5.01187 # coverted 7 db of EbNo
encoded3_n = GaussianNoise(np.sqrt(1 / (2 * R * EbNo_train)))(encoded2_n)
decoded_n = Dense(M, activation='relu')(encoded3_n)
decoded1_n = Dense(M, activation='softmax')(decoded_n)
autoencoder_n = Model(input_signal, decoded1_n)
adam = Adam(lr=0.01)
autoencoder_n.compile(optimizer=adam, loss='categorical_crossentropy')
# printing summary of layers and it's trainable parameters
print(autoencoder_n.summary())
# for tensor board visualization
# tbCallBack = keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)
# traning auto encoder
autoencoder_n.fit(data, data,
epochs=45,
batch_size=32)
encoder_n = Model(input_signal, encoded2_n)
encoded_input_n = Input(shape=(n_channel,))
deco_n = autoencoder_n.layers[-2](encoded_input_n)
deco_n = autoencoder_n.layers[-1](deco_n)
decoder_n = Model(encoded_input_n, deco_n)
# Embedding Layer
input_signal = Input( shape = (1, ) )
encoded = embeddings.Embedding(input_dim=M, output_dim = k,input_length= 1 )(input_signal)
encoded1 = Flatten()(encoded)
encoded2 = Dense(M,activation= 'relu')(encoded1)
#encoded2 = LSTM(n_channel, dropout=0.2, recurrent_dropout=0.2)(encoded)
encoded3 = Dense(n_channel, activation= 'linear')(encoded2)
#encoded4 = Lambda(lambda x: np.sqrt(n_channel)* K.l2_normalize(x, axis=1))(encoded3)
encoded4 = Lambda(lambda x: np.sqrt(n_channel) * K.l2_normalize(x, axis=1))(encoded3)
EbNodB_train = 7
EbNo_train = 10 ** (EbNodB_train / 10.0)
# EbNo_train = 5.01187
channel_out = GaussianNoise(np.sqrt(1 / (2 * R * EbNo_train)))(encoded4)
decoded = Dense(M, activation='relu')(channel_out)
decoded1 = Dense(M, activation='softmax')(decoded)
#decoded1 = Dense(M, activation= 'sigmoid')(decoded)
#?? why softmax?
auto_encoder_embedding = Model(input_signal, decoded1)
adam= Adam(lr= 0.01)
auto_encoder_embedding.compile(optimizer= adam,
loss= 'sparse_categorical_crossentropy',
)
print(auto_encoder_embedding.summary())
auto_encoder_embedding.fit(label, label_out,
epochs=45,
batch_size=32)
encoder = Model(input_signal, encoded4)
encoded_input = Input(shape=(n_channel,))
deco = auto_encoder_embedding.layers[-2](encoded_input)
deco = auto_encoder_embedding.layers[-1](deco)
decoder = Model(encoded_input, deco)
#generating test data
N = 1500
test_label = np.random.randint(M, size=N)
test_label_out = test_label.reshape((-1,1))
test_data = []
for i in test_label:
temp = np.zeros(M)
temp[i] = 1
test_data.append(temp)
test_data = np.array(test_data)
import matplotlib.pyplot as plt
"""
#plotting constellation diagram for embedding
scatter_plot = []
for i in range (0,M):
scatter_plot.append(encoder.predict(np.expand_dims(i, axis=0)))
scatter_plot = np.array(scatter_plot)
print(scatter_plot.shape)
scatter_plot = scatter_plot.reshape(M, 2, 1)
plt.scatter(scatter_plot[:, 0], scatter_plot[:, 1])
plt.legend(['embedding_constellation'],loc='upper left')
plt.axis((-2.5, 2.5, -2.5, 2.5))
plt.grid()
plt.show()
#plotting constellation diagram for one-hot
scatter_plot = []
for i in range(0, M):
temp = np.zeros(M)
temp[i] = 1
scatter_plot.append(encoder_n.predict(np.expand_dims(temp, axis=0)))
scatter_plot = np.array(scatter_plot)
print(scatter_plot.shape)
scatter_plot = scatter_plot.reshape(M, 2, 1)
plt.scatter(scatter_plot[:, 0], scatter_plot[:, 1], )
plt.legend(['onehot_constellation'],loc='upper left')
plt.axis((-2.5, 2.5, -2.5, 2.5))
plt.grid()
plt.show()
"""
# use this function for ploting constellation for higher dimenson like 7-D for (7,4) autoencoder
# generating data for checking BER
# if you're not using t-sne for visulation than set N to 70,000 for better result
# for t-sne use less N like N = 1500
x_emb = encoder.predict(test_label)
noise_std = np.sqrt(1/(2*R*EbNo_train))
noise = noise_std * np.random.randn(N,n_channel)
x_emb = x_emb + noise
from sklearn.manifold import TSNE
X_embedded = TSNE(learning_rate=700, n_components=2,n_iter=35000, random_state=0, perplexity=60).fit_transform(x_emb)
print (X_embedded.shape)
X_embedded = X_embedded / 7
import matplotlib.pyplot as plt
plt.scatter(X_embedded[:,0],X_embedded[:,1])
#plt.axis((-2.5,2.5,-2.5,2.5))
plt.legend(['Autoencoeder_embedding(7,4),constellation,emb_k=16 '],loc = 'lower left')
plt.grid()
plt.show()
x_emb = encoder_n.predict(test_label)
noise_std = np.sqrt(1/(2*R*EbNo_train))
noise = noise_std * np.random.randn(N,n_channel)
x_emb = x_emb + noise
from sklearn.manifold import TSNE
X_embedded = TSNE(learning_rate=700, n_components=2,n_iter=35000, random_state=0, perplexity=60).fit_transform(x_emb)
print (X_embedded.shape)
X_embedded = X_embedded / 7
import matplotlib.pyplot as plt
plt.scatter(X_embedded[:,0],X_embedded[:,1])
#plt.axis((-2.5,2.5,-2.5,2.5))
plt.legend(['Autoencoeder_embedding(7,4),constellation,emb_k=16 '],loc = 'lower left')
plt.grid()
plt.show()
#ccalculating BER for embedding
EbNodB_range = list(np.linspace(-4, 8.5 ,26))
ber = [None] * len(EbNodB_range)
for n in range(0, len(EbNodB_range)):
EbNo = 10 ** (EbNodB_range[n] / 10.0)
noise_std = np.sqrt(1 / (2 * R * EbNo))
noise_mean = 0
no_errors = 0
nn = N
noise = noise_std * np.random.randn(nn, n_channel)
encoded_signal = encoder.predict(test_label)
final_signal = encoded_signal + noise
pred_final_signal = decoder.predict(final_signal)
pred_output = np.argmax(pred_final_signal, axis=1)
no_errors = (pred_output != test_label)
no_errors = no_errors.astype(int).sum()
ber[n] = no_errors/nn
print('SNR:', EbNodB_range[n], 'BER:', ber[n])
#ccalculating BER for onehot
ber_n = [None] * len(EbNodB_range)
for n in range(0, len(EbNodB_range)):
EbNo = 10.0 ** (EbNodB_range[n] / 10.0)
noise_std = np.sqrt(1 / (2 * R * EbNo))
noise_mean = 0
no_errors = 0
nn = N
noise = noise_std * np.random.randn(nn, n_channel)
encoded_signal = encoder_n.predict(test_data)
final_signal = encoded_signal + noise
pred_final_signal = decoder_n.predict(final_signal)
pred_output = np.argmax(pred_final_signal, axis=1)
no_errors = (pred_output != test_label)
no_errors = no_errors.astype(int).sum()
ber_n[n] = no_errors / nn
print('SNR:', EbNodB_range[n], 'BER_N:', ber_n[n])
plt.plot(EbNodB_range, ber )
plt.plot(EbNodB_range, ber_n )
plt.yscale('log')
plt.xlabel('SNR_RANGE')
plt.ylabel('Block Error Rate')
plt.grid()
plt.legend(['Autoencoeder_embedding(7,4),emb_k=32 ','Autoencoeder_onehot(7,4)'],loc = 'lower left')
plt.legend(loc='upper right',ncol= 1)
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。