1 Star 1 Fork 0

zhn1234/yolo3-keras

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
train.py 10.45 KB
一键复制 编辑 原始数据 按行查看 历史
Bubbliiiing 提交于 2020-07-11 17:23 . Update train.py
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from nets.yolo3 import yolo_body
from nets.loss import yolo_loss
from keras.backend.tensorflow_backend import set_session
from utils.utils import get_random_data
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
#---------------------------------------------------#
# 训练数据生成器
#---------------------------------------------------#
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
'''data generator for fit_generator'''
n = len(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0:
np.random.shuffle(annotation_lines)
image, box = get_random_data(annotation_lines[i], input_shape, random=True)
image_data.append(image)
box_data.append(box)
i = (i+1) % n
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)
#---------------------------------------------------#
# 读入xml文件,并输出y_true
#---------------------------------------------------#
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
# 一共有三个特征层数
num_layers = len(anchors)//3
# 先验框
# 678为116,90, 156,198, 373,326
# 345为30,61, 62,45, 59,119
# 012为10,13, 16,30, 33,23,
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]
true_boxes = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32') # 416,416
# 读出xy轴,读出长宽
# 中心点(m,n,2)
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
# 计算比例
true_boxes[..., 0:2] = boxes_xy/input_shape[:]
true_boxes[..., 2:4] = boxes_wh/input_shape[:]
# m张图
m = true_boxes.shape[0]
# 得到网格的shape为13,13;26,26;52,52
grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
# y_true的格式为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
dtype='float32') for l in range(num_layers)]
# [1,9,2]
anchors = np.expand_dims(anchors, 0)
anchor_maxes = anchors / 2.
anchor_mins = -anchor_maxes
# 长宽要大于0才有效
valid_mask = boxes_wh[..., 0]>0
for b in range(m):
# 对每一张图进行处理
wh = boxes_wh[b, valid_mask[b]]
if len(wh)==0: continue
# [n,1,2]
wh = np.expand_dims(wh, -2)
box_maxes = wh / 2.
box_mins = -box_maxes
# 计算真实框和哪个先验框最契合
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
# 维度是(n) 感谢 消尽不死鸟 的提醒
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
for l in range(num_layers):
if n in anchor_mask[l]:
# floor用于向下取整
i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')
# 找到真实框在特征层l中第b副图像对应的位置
k = anchor_mask[l].index(n)
c = true_boxes[b,t, 4].astype('int32')
y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]
y_true[l][b, j, i, k, 4] = 1
y_true[l][b, j, i, k, 5+c] = 1
return y_true
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC' #A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
config.gpu_options.per_process_gpu_memory_fraction = 0.7
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
# 标签的位置
annotation_path = '2007_train.txt'
# 获取classes和anchor的位置
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
#------------------------------------------------------#
# 权值文件请看README,百度网盘下载
# 训练自己的数据集时提示维度不匹配正常
# 预测的东西都不一样了自然维度不匹配
#------------------------------------------------------#
weights_path = 'model_data/yolo_weights.h5'
# 获得classes和anchor
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
# 一共有多少类
num_classes = len(class_names)
num_anchors = len(anchors)
# 训练后的模型保存的位置
log_dir = 'logs/'
# 输入的shape大小
input_shape = (416,416)
# 清除session
K.clear_session()
# 输入的图像为
image_input = Input(shape=(None, None, 3))
h, w = input_shape
# 创建yolo模型
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
model_body = yolo_body(image_input, num_anchors//3, num_classes)
# 载入预训练权重
print('Load weights {}.'.format(weights_path))
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
# y_true为13,13,3,85
# 26,26,3,85
# 52,52,3,85
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
# 输入为*model_body.input, *y_true
# 输出为model_loss
loss_input = [*model_body.output, *y_true]
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(loss_input)
model = Model([model_body.input, *y_true], model_loss)
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
freeze_layers = 184
for i in range(freeze_layers): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(freeze_layers, len(model_body.layers)))
# 训练参数设置
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=False, period=2)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=6, verbose=1)
# 0.1用于验证,0.9用于训练
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
# 调整非主干模型first
if True:
model.compile(optimizer=Adam(lr=1e-3), loss={
'yolo_loss': lambda y_true, y_pred: y_pred})
batch_size = 8
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=50,
initial_epoch=0,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
for i in range(freeze_layers): model_body.layers[i].trainable = True
# 解冻后训练
if True:
model.compile(optimizer=Adam(lr=1e-4), loss={
'yolo_loss': lambda y_true, y_pred: y_pred})
batch_size = 4
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=100,
initial_epoch=50,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
model.save_weights(log_dir + 'last1.h5')
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhn1234/yolo3-keras.git
git@gitee.com:zhn1234/yolo3-keras.git
zhn1234
yolo3-keras
yolo3-keras
master

搜索帮助