1 Star 1 Fork 0

zhengshengnan/differentiable_volumetric_rendering

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
render.py 4.46 KB
一键复制 编辑 原始数据 按行查看 历史
import torch
# import torch.distributions as dist
import os
import argparse
from tqdm import tqdm
import time
from collections import defaultdict
import pandas as pd
from im2mesh import config
from im2mesh.checkpoints import CheckpointIO
from PIL import Image
import numpy as np
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Extract meshes from occupancy process.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# fix
cfg['data']['split_model_for_images'] = False
cfg['data']['depth_from_visual_hull'] = False
out_dir = cfg['training']['out_dir']
render_dir = os.path.join(out_dir, cfg['rendering']['render_dir'])
out_time_file = os.path.join(render_dir, 'time_generation_full.pkl')
out_time_file_class = os.path.join(render_dir, 'time_generation.pkl')
vis_n_outputs = cfg['generation']['vis_n_outputs']
input_type = cfg['data']['input_type']
# Dataset
dataset = config.get_dataset(cfg, mode='render', return_idx=True)
# Model
model = config.get_model(cfg, device=device, len_dataset=len(dataset))
checkpoint_io = CheckpointIO(out_dir, model=model)
checkpoint_io.load(cfg['test']['model_file'], device=device)
# Generator
renderer = config.get_renderer(model, cfg, device=device)
# Loader
torch.manual_seed(0)
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=True)
# Statistics
time_dicts = []
# Generate
model.eval()
# Count how many models already created
model_counter = defaultdict(int)
for it, data in enumerate(tqdm(test_loader)):
# Output folders
img_dir = os.path.join(render_dir)
generation_vis_dir = os.path.join(img_dir, 'vis', )
if not os.path.exists(generation_vis_dir):
os.makedirs(generation_vis_dir)
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'na', 'category_id': 0000}
modelname = model_dict['model']
category = model_dict.get('category', 'na')
category_id = model_dict.get('category_id', 0000)
img_dir = os.path.join(img_dir, category)
generation_vis_dir = os.path.join(generation_vis_dir, category)
if not os.path.exists(img_dir):
os.makedirs(img_dir)
if not os.path.exists(generation_vis_dir) and vis_n_outputs > 0:
os.makedirs(generation_vis_dir)
# Timing dict
time_dict = {
'idx': idx,
'class_name': category,
'class_id': category_id,
'modelname': modelname,
}
time_dicts.append(time_dict)
# Generate outputs
out_file_dict = {}
t0 = time.time()
out = renderer.render_and_export(data, img_dir, modelname)
time_dict['rendering'] = time.time() - t0
# Get statistics
try:
img_in, img_out, stats_dict = out
except TypeError:
img_in, img_out, stats_dict = out, {}
time_dict.update(stats_dict)
# Copy to visualization directory for first vis_n_output samples
c_it = model_counter[category]
if c_it < vis_n_outputs:
# Save output files
img_gt = Image.fromarray(
(img_in[0].permute(1, 2, 0) * 255).numpy().astype(np.uint8)
).convert("RGB")
img_gt.save(
os.path.join(generation_vis_dir, '%02d_input.png' % c_it)
)
img_out[0].save(
os.path.join(generation_vis_dir, '%02d_pred.png' % c_it)
)
model_counter[category] += 1
# Create pandas dataframe and save
time_df = pd.DataFrame(time_dicts)
time_df.set_index(['idx'], inplace=True)
time_df.to_pickle(out_time_file)
# Create pickle files with main statistics
time_df_class = time_df.groupby(by=['class_name']).mean()
time_df_class.to_pickle(out_time_file_class)
# Print results
time_df_class.loc['mean'] = time_df_class.mean()
print('Timings [s]:')
print(time_df_class)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhengshengnan1986/differentiable_volumetric_rendering.git
git@gitee.com:zhengshengnan1986/differentiable_volumetric_rendering.git
zhengshengnan1986
differentiable_volumetric_rendering
differentiable_volumetric_rendering
master

搜索帮助