1 Star 0 Fork 81

zhaosai/openjdk-1.8.0

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
8160369.patch 9.94 KB
一键复制 编辑 原始数据 按行查看 历史
eapen 提交于 2021-05-19 17:01 . I3PQM1: update to 8u292-b10
From be5a699028cd0b8fd49eb2df0c4b3d1653eca4f3 Mon Sep 17 00:00:00 2001
Date: Mon, 25 Jan 2021 17:22:52 +0800
Subject: Backport of JDK-8160369
Summary:<GC>:[Backport of JDK-8160369 and it's subtasks] Memory fences needed around setting and reading object lengths
LLT:
bug url: https://bugs.openjdk.java.net/browse/JDK-8160369
---
.../vm/gc_implementation/g1/g1RemSet.cpp | 101 +++++++++----
.../vm/gc_implementation/g1/heapRegion.cpp | 25 +---
.../vm/gc_implementation/g1/heapRegion.hpp | 2 +
.../gc_implementation/g1/heapRegionType.hpp | 3 +
4 files changed, 82 insertions(+), 49 deletions(-)
diff --git a/hotspot/src/share/vm/gc_implementation/g1/g1RemSet.cpp b/hotspot/src/share/vm/gc_implementation/g1/g1RemSet.cpp
index 4cad9234c..b062947c8 100644
--- a/hotspot/src/share/vm/gc_implementation/g1/g1RemSet.cpp
+++ b/hotspot/src/share/vm/gc_implementation/g1/g1RemSet.cpp
@@ -460,18 +460,26 @@ bool G1RemSet::refine_card(jbyte* card_ptr, uint worker_i,
// And find the region containing it.
HeapRegion* r = _g1->heap_region_containing(start);
- // Why do we have to check here whether a card is on a young region,
- // given that we dirty young regions and, as a result, the
- // post-barrier is supposed to filter them out and never to enqueue
- // them? When we allocate a new region as the "allocation region" we
- // actually dirty its cards after we release the lock, since card
- // dirtying while holding the lock was a performance bottleneck. So,
- // as a result, it is possible for other threads to actually
- // allocate objects in the region (after the acquire the lock)
- // before all the cards on the region are dirtied. This is unlikely,
- // and it doesn't happen often, but it can happen. So, the extra
- // check below filters out those cards.
- if (r->is_young()) {
+ // This check is needed for some uncommon cases where we should
+ // ignore the card.
+ //
+ // The region could be young. Cards for young regions are
+ // distinctly marked (set to g1_young_gen), so the post-barrier will
+ // filter them out. However, that marking is performed
+ // concurrently. A write to a young object could occur before the
+ // card has been marked young, slipping past the filter.
+ //
+ // The card could be stale, because the region has been freed since
+ // the card was recorded. In this case the region type could be
+ // anything. If (still) free or (reallocated) young, just ignore
+ // it. If (reallocated) old or humongous, the later card trimming
+ // and additional checks in iteration may detect staleness. At
+ // worst, we end up processing a stale card unnecessarily.
+ //
+ // In the normal (non-stale) case, the synchronization between the
+ // enqueueing of the card and processing it here will have ensured
+ // we see the up-to-date region type here.
+ if (!r->is_old_or_humongous()) {
return false;
}
@@ -503,26 +511,69 @@ bool G1RemSet::refine_card(jbyte* card_ptr, uint worker_i,
assert(!check_for_refs_into_cset, "sanity");
assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
+ const jbyte* orig_card_ptr = card_ptr;
card_ptr = hot_card_cache->insert(card_ptr);
if (card_ptr == NULL) {
// There was no eviction. Nothing to do.
return false;
- }
-
- start = _ct_bs->addr_for(card_ptr);
- r = _g1->heap_region_containing(start);
+ } else if (card_ptr != orig_card_ptr) {
+ // Original card was inserted and an old card was evicted.
+ start = _ct_bs->addr_for(card_ptr);
+ r = _g1->heap_region_containing(start);
+
+ // Check whether the region formerly in the cache should be
+ // ignored, as discussed earlier for the original card. The
+ // region could have been freed while in the cache. The cset is
+ // not relevant here, since we're in concurrent phase.
+ if (!r->is_old_or_humongous()) {
+ return false;
+ }
+ } // Else we still have the original card.
+ }
- // Checking whether the region we got back from the cache
- // is young here is inappropriate. The region could have been
- // freed, reallocated and tagged as young while in the cache.
- // Hence we could see its young type change at any time.
+ // Trim the region designated by the card to what's been allocated
+ // in the region. The card could be stale, or the card could cover
+ // (part of) an object at the end of the allocated space and extend
+ // beyond the end of allocation.
+ HeapWord* scan_limit;
+ if (_g1->is_gc_active()) {
+ // If we're in a STW GC, then a card might be in a GC alloc region
+ // and extend onto a GC LAB, which may not be parsable. Stop such
+ // at the "scan_top" of the region.
+ scan_limit = r->scan_top();
+ } else {
+ // Non-humongous objects are only allocated in the old-gen during
+ // GC, so if region is old then top is stable. Humongous object
+ // allocation sets top last; if top has not yet been set, this is
+ // a stale card and we'll end up with an empty intersection. If
+ // this is not a stale card, the synchronization between the
+ // enqueuing of the card and processing it here will have ensured
+ // we see the up-to-date top here.
+ scan_limit = r->top();
+ }
+ if (scan_limit <= start) {
+ // If the trimmed region is empty, the card must be stale.
+ return false;
}
+ // Okay to clean and process the card now. There are still some
+ // stale card cases that may be detected by iteration and dealt with
+ // as iteration failure.
+ *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
+
+ // This fence serves two purposes. First, the card must be cleaned
+ // before processing the contents. Second, we can't proceed with
+ // processing until after the read of top, for synchronization with
+ // possibly concurrent humongous object allocation. It's okay that
+ // reading top and reading type were racy wrto each other. We need
+ // both set, in any order, to proceed.
+ OrderAccess::fence();
+
// Don't use addr_for(card_ptr + 1) which can ask for
- // a card beyond the heap. This is not safe without a perm
- // gen at the upper end of the heap.
- HeapWord* end = start + CardTableModRefBS::card_size_in_words;
- MemRegion dirtyRegion(start, end);
+ // a card beyond the heap.
+ HeapWord* end = start + CardTableModRefBS::card_size_in_words;
+ MemRegion dirty_region(start, MIN2(scan_limit, end));
+ assert(!dirty_region.is_empty(), "sanity");
#if CARD_REPEAT_HISTO
init_ct_freq_table(_g1->max_capacity());
@@ -570,7 +621,7 @@ bool G1RemSet::refine_card(jbyte* card_ptr, uint worker_i,
// allocation in this region and making it safe to check the young type.
bool card_processed =
- r->oops_on_card_seq_iterate_careful(dirtyRegion,
+ r->oops_on_card_seq_iterate_careful(dirty_region,
&filter_then_update_rs_oop_cl,
card_ptr);
diff --git a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp
index 794911ef6..7c48501f3 100644
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp
@@ -399,9 +443,6 @@ HeapRegion::object_iterate_mem_careful(MemRegion mr,
} else if (!g1h->is_obj_dead(obj)) {
cl->do_object(obj);
}
- if (cl->abort()) return cur;
- // The check above must occur before the operation below, since an
- // abort might invalidate the "size" operation.
cur += block_size(cur);
}
return NULL;
@@ -454,29 +495,9 @@ bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
FilterOutOfRegionClosure* cl,
jbyte* card_ptr) {
assert(card_ptr != NULL, "pre-condition");
+ assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
G1CollectedHeap* g1h = G1CollectedHeap::heap();
- // If we're within a stop-world GC, then we might look at a card in a
- // GC alloc region that extends onto a GC LAB, which may not be
- // parseable. Stop such at the "scan_top" of the region.
- if (g1h->is_gc_active()) {
- mr = mr.intersection(MemRegion(bottom(), scan_top()));
- } else {
- mr = mr.intersection(used_region());
- }
- if (mr.is_empty()) {
- return true;
- }
-
- // The intersection of the incoming mr (for the card) and the
- // allocated part of the region is non-empty. This implies that
- // we have actually allocated into this region. The code in
- // G1CollectedHeap.cpp that allocates a new region sets the
- // is_young tag on the region before allocating. Thus we
- // safely know if this region is young.
- if (is_young()) {
- return true;
- }
// We can only clean the card here, after we make the decision that
// the card is not young.
diff --git a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp
index 52ef1d0d2..8a45b3915 100644
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp
@@ -422,6 +422,8 @@ class HeapRegion: public G1OffsetTableContigSpace {
bool is_old() const { return _type.is_old(); }
+ bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
+
// For a humongous region, region in which it starts.
HeapRegion* humongous_start_region() const {
return _humongous_start_region;
diff --git a/hotspot/src/share/vm/gc_implementation/g1/heapRegionType.hpp b/hotspot/src/share/vm/gc_implementation/g1/heapRegionType.hpp
index a9a4fbc25..007dabf19 100644
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegionType.hpp
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegionType.hpp
@@ -111,6 +111,9 @@ public:
bool is_old() const { return get() == OldTag; }
+ bool is_old_or_humongous() const { return (get() & (OldTag | HumMask)) != 0; }
+
+
// Setters
void set_free() { set(FreeTag); }
--
2.19.0
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhaosai-Simon/openjdk-1.8.0.git
git@gitee.com:zhaosai-Simon/openjdk-1.8.0.git
zhaosai-Simon
openjdk-1.8.0
openjdk-1.8.0
master

搜索帮助