代码拉取完成,页面将自动刷新
import os, numpy as np, argparse, json, sys, numba, yaml, shutil
import multiprocessing
# import torch.multiprocessing as multiprocessing
import mot_3d.visualization as visualization, mot_3d.utils as utils
from mot_3d.data_protos import BBox, Validity
from mot_3d.mot import MOTModel
from mot_3d.frame_data import FrameData
from data_loader import WaymoLoader
from ipdb import set_trace
from mot_3d.utils import Timer
import time
timer = Timer(10)
parser = argparse.ArgumentParser()
# running configurations
parser.add_argument('--name', type=str, default='immortal')
parser.add_argument('--det_name', type=str, default='cp')
parser.add_argument('--process', type=int, default=1)
parser.add_argument('--visualize', action='store_true', default=False)
# parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--skip', action='store_true', default=False)
parser.add_argument('--start_frame', type=int, default=0, help='start at a middle frame for debug')
parser.add_argument('--obj_type', type=str, default='vehicle', choices=['vehicle', 'pedestrian', 'cyclist'])
parser.add_argument('--split', type=str, default='validation')
# paths
parser.add_argument('--config_path', type=str, default='configs/waymo_configs/immortal.yaml')
parser.add_argument('--result_folder', type=str, default='./mot_results/waymo')
parser.add_argument('--data_folder', type=str, default='./data/waymo')
parser.add_argument('--det_data_folder', type=str, default='./data/waymo')
args = parser.parse_args()
if not os.path.exists(args.result_folder):
os.makedirs(args.result_folder)
def load_gt_bboxes(gt_folder, data_folder, segment_name, type_token):
gt_info = np.load(os.path.join(gt_folder, '{:}.npz'.format(segment_name)),
allow_pickle=True)
ego_info = np.load(os.path.join(data_folder, 'ego_info', '{:}.npz'.format(segment_name)),
allow_pickle=True)
bboxes, ids, inst_types = gt_info['bboxes'], gt_info['ids'], gt_info['types']
gt_ids, gt_bboxes = utils.inst_filter(ids, bboxes, inst_types, type_field=[type_token], id_trans=True)
ego_keys = sorted(utils.str2int(ego_info.keys()))
egos = [ego_info[str(key)] for key in ego_keys]
gt_bboxes = gt_bbox2world(gt_bboxes, egos)
return gt_bboxes, gt_ids
def gt_bbox2world(bboxes, egos):
frame_num = len(egos)
for i in range(frame_num):
ego = egos[i]
bbox_num = len(bboxes[i])
for j in range(bbox_num):
bboxes[i][j] = BBox.bbox2world(ego, bboxes[i][j])
return bboxes
def frame_visualization(bboxes, ids, states, gt_bboxes=None, gt_ids=None, pc=None, dets=None, name=''):
visualizer = visualization.Visualizer2D(name=name, figsize=(12, 12))
if pc is not None:
visualizer.handler_pc(pc)
for _, bbox in enumerate(gt_bboxes):
visualizer.handler_box(bbox, message='', color='black')
dets = [d for d in dets if d.s >= 0.1]
for det in dets:
visualizer.handler_box(det, message='%.2f' % det.s, color='green', linestyle='dashed')
for _, (bbox, id, state) in enumerate(zip(bboxes, ids, states)):
if Validity.agein1(state):
visualizer.handler_box(bbox, message=str(id), color='red')
else:
visualizer.handler_box(bbox, message=str(id), color='light_blue')
visualizer.show()
visualizer.save('temp.jpg')
visualizer.close()
import pdb
pdb.set_trace()
def sequence_mot(configs, data_loader: WaymoLoader, sequence_id, gt_bboxes=None, gt_ids=None, visualize=False, return_tracklets=False):
tracker = MOTModel(configs)
frame_num = len(data_loader)
IDs, bboxes, states, types = list(), list(), list(), list()
for _ in range(data_loader.cur_frame, frame_num):
frame_data = next(data_loader)
frame_data = FrameData(dets=frame_data['dets'], ego=frame_data['ego'], pc=frame_data['pc'],
det_types=frame_data['det_types'], aux_info=frame_data['aux_info'], time_stamp=frame_data['time_stamp'], abs_frame_index=frame_data['abs_frame_index'])
# mot
frame_results = tracker.frame_mot(frame_data)
result_pred_bboxes = [trk['bboxes'] for trk in frame_results]
result_pred_ids = [trk['id'] for trk in frame_results]
result_pred_states = [trk['state'] for trk in frame_results]
result_types = [trk['type'] for trk in frame_results]
# wrap for output
IDs.append(result_pred_ids)
result_pred_bboxes = [BBox.bbox2array(bbox) for bbox in result_pred_bboxes]
bboxes.append(result_pred_bboxes)
states.append(result_pred_states)
types.append(result_types)
if return_tracklets:
return tracker.tracklets
return IDs, bboxes, states, types
def main(name, obj_type, config_path, data_folder, det_data_folder, result_folder, counter_list, start_frame=0, token=0, process=1):
summary_folder = os.path.join(result_folder, 'summary', obj_type)
# simply knowing about all the segments
file_names = sorted(os.listdir(os.path.join(data_folder, 'ego_info')))
if args.skip:
file_names = [fname for fname in file_names if not os.path.exists(os.path.join(summary_folder, fname))]
# load model configs
configs = yaml.load(open(config_path, 'r'))
gpu = configs['running'].get('gpu', False)
if gpu:
import torch
torch.cuda.set_device(token % 8)
if obj_type == 'vehicle':
type_token = 1
elif obj_type == 'pedestrian':
type_token = 2
elif obj_type == 'cyclist':
type_token = 4
for file_index, file_name in enumerate(file_names[:]):
if file_index % process != token:
continue
segment_name = file_name.split('.')[0]
data_loader = WaymoLoader(configs, [type_token], segment_name, data_folder, det_data_folder, start_frame)
ids, bboxes, states, types = sequence_mot(configs, data_loader, file_index)
counter_list.append(file_index)
print('FINISH TYPE {:} SEQ {:} / {:}'.format(obj_type, len(counter_list), len(file_names)))
np.savez_compressed(os.path.join(summary_folder, '{}.npz'.format(segment_name)),
ids=ids, bboxes=bboxes, states=states)
if __name__ == '__main__':
assert args.split in ('training', 'validation', 'testing')
args.data_folder = os.path.join(args.data_folder, args.split)
args.det_data_folder = os.path.join(args.det_data_folder, args.split, 'detection')
args.result_folder = os.path.join(args.result_folder, args.split)
result_folder = os.path.join(args.result_folder, args.name + f'_{args.det_name}')
if not os.path.exists(result_folder):
os.makedirs(result_folder)
summary_folder = os.path.join(result_folder, 'summary')
if not os.path.exists(summary_folder):
os.makedirs(summary_folder)
summary_folder = os.path.join(summary_folder, args.obj_type)
if not os.path.exists(summary_folder):
os.makedirs(summary_folder)
det_data_folder = os.path.join(args.det_data_folder, args.det_name)
manager = multiprocessing.Manager()
counter_list = manager.list()
beg = time.time()
if args.process > 1:
pool = multiprocessing.Pool(args.process)
for token in range(args.process):
result = pool.apply_async(main, args=(args.name, args.obj_type, args.config_path, args.data_folder, det_data_folder,
result_folder, counter_list, 0, token, args.process))
pool.close()
pool.join()
else:
main(args.name, args.obj_type, args.config_path, args.data_folder, det_data_folder, result_folder, counter_list,
args.start_frame, 0, 1)
end = time.time()
print(f'Tracking time cost: {end - beg}s')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。