1 Star 1 Fork 0

zhangxiaohuixuhao/pytorch_network

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
Hourglass.py 4.81 KB
一键复制 编辑 原始数据 按行查看 历史
hzhang 提交于 2021-06-28 14:59 +08:00 . 0628
import torch
import torch.nn as nn
import torchvision
def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding=0):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size,stride=stride,padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU6(inplace=True)
)
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
mid_channels = out_channels//2
self.bottleneck = nn.Sequential(
ConvBNReLU(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
ConvBNReLU(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1),
ConvBNReLU(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
)
self.shortcut = ConvBNReLU(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1)
def forward(self, x):
out = self.bottleneck(x)
return out+self.shortcut(x)
class HourglassModule(nn.Module):
def __init__(self, nChannels=256, nModules=2, numReductions = 4):
super(HourglassModule, self).__init__()
self.nChannels = nChannels
self.nModules = nModules
self.numReductions = numReductions
self.residual_block = self._make_residual_layer(self.nModules, self.nChannels)
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.after_pool_block = self._make_residual_layer(self.nModules, self.nChannels)
if numReductions > 1:
self.hourglass_module = HourglassModule(self.nChannels, self.numReductions - 1, self.nModules)
else:
self.num1res_block = self._make_residual_layer(self.nModules, self.nChannels)
self.lowres_block = self._make_residual_layer(self.nModules, self.nChannels)
self.upsample = nn.Upsample(scale_factor=2)
def _make_residual_layer(self, nModules, nChannels):
_residual_blocks = []
for _ in range(nModules):
_residual_blocks.append(ResidualBlock(in_channels=nChannels, out_channels=nChannels))
return nn.Sequential(*_residual_blocks)
def forward(self, x):
out1 = self.residual_block(x)
out2 = self.max_pool(x)
out2 = self.after_pool_block(out2)
if self.numReductions > 1:
out2 = self.hourglass_module(out2)
else:
out2 = self.num1res_block(out2)
out2 = self.lowres_block(out2)
out2 = self.upsample(out2)
return out1 + out2
class Hourglass(nn.Module):
def __init__(self, nJoints):
super(Hourglass, self).__init__()
self.first_conv = ConvBNReLU(in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3)
self.residual_block1 = ResidualBlock(in_channels=64, out_channels=128)
self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.residual_block2 = ResidualBlock(in_channels=128, out_channels=128)
self.residual_block3 = ResidualBlock(in_channels=128, out_channels=256)
self.hourglass_module1 = HourglassModule(nChannels=256, nModules=2, numReductions = 4)
self.hourglass_module2 = HourglassModule(nChannels=256, nModules=2, numReductions = 4)
self.after_hourglass_conv1 = ConvBNReLU(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.proj_conv1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1)
self.out_conv1 = nn.Conv2d(in_channels=256,out_channels=nJoints,kernel_size=1,stride=1)
self.remap_conv1 = nn.Conv2d(in_channels=nJoints, out_channels=256, kernel_size=1, stride=1)
self.after_hourglass_conv2 = ConvBNReLU(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.proj_conv2 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1)
self.out_conv2 = nn.Conv2d(in_channels=256, out_channels=nJoints, kernel_size=1, stride=1)
self.remap_conv2 = nn.Conv2d(in_channels=nJoints, out_channels=256, kernel_size=1, stride=1)
def forward(self, x):
x = self.max_pool(self.residual_block1(self.first_conv(x)))
x = self.residual_block3(self.residual_block2(x))
x = self.hourglass_module1(x)
residual1= x = self.after_hourglass_conv1(x)
out1 = self.out_conv1(x)
residual2 = x = residual1 + self.remap_conv1(out1)+self.proj_conv1(x)
x = self.hourglass_module2(x)
x = self.after_hourglass_conv2(x)
out2 = self.out_conv2(x)
x = residual2 + self.remap_conv2(out2) + self.proj_conv2(x)
return out1, out2
if __name__ == '__main__':
model = Hourglass(nJoints=16)
print(model)
data = torch.randn(1,3,256,256)
out1, out2 = model(data)
print(out1.shape)
print(out2.shape)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhangxiaohuixuhao/pytorch_network.git
git@gitee.com:zhangxiaohuixuhao/pytorch_network.git
zhangxiaohuixuhao
pytorch_network
pytorch_network
master

搜索帮助