代码拉取完成,页面将自动刷新
同步操作将从 京阿尼的养成方法/基于python+opencv的车牌识别系统 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import cv2
from paddleocr import PaddleOCR
import os
from matplotlib import pyplot as plt
def Morph_Distinguish(img):
# 1、转灰度图
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# 2、顶帽运算
# 创建一个17*17矩阵内核
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, kernel)
# 3、Sobel算子提取y方向边缘(揉成一坨)
y = cv2.Sobel(tophat, cv2.CV_16S, 1, 0)
absY = cv2.convertScaleAbs(y)
# 4、自适应二值化(阈值自己可调)
ret, binary = cv2.threshold(absY, 75, 255, cv2.THRESH_BINARY)
# 5、开运算分割(纵向去噪,分隔)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 15))
Open = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)
# 6、闭运算合并,把图像闭合、揉团,使图像区域化,便于找到车牌区域,进而得到轮廓
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (64, 15)) # 长度不够加这里
close = cv2.morphologyEx(Open, cv2.MORPH_CLOSE, kernel)
# 7、膨胀/腐蚀(去噪得到车牌区域)
# 中远距离车牌识别
#kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 7))
#kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 11))
# 近距离车牌识别
kernel_x = cv2.getStructuringElement(cv2.MORPH_RECT, (44, 14))
kernel_y = cv2.getStructuringElement(cv2.MORPH_RECT, (44, 15))
# 7-1、腐蚀、膨胀(去噪)
erode_y = cv2.morphologyEx(close, cv2.MORPH_ERODE, kernel_y)
dilate_y = cv2.morphologyEx(erode_y, cv2.MORPH_DILATE, kernel_y)
# 7-2、膨胀、腐蚀(连接)(二次缝合)
dilate_x = cv2.morphologyEx(dilate_y, cv2.MORPH_DILATE, kernel_x)
erode_x = cv2.morphologyEx(dilate_x, cv2.MORPH_ERODE, kernel_x)
# 8、腐蚀、膨胀:去噪
kernel_e = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 9))
erode = cv2.morphologyEx(erode_x, cv2.MORPH_ERODE, kernel_e)
kernel_d = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 11))
dilate = cv2.morphologyEx(erode, cv2.MORPH_DILATE, kernel_d)
# 9、获取外轮廓
img_copy = img.copy()
# 9-1、得到轮廓
contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 9-2、画出轮廓并显示
cv2.drawContours(img_copy, contours, -1, (255, 0, 255), 2)
# 10、遍历所有轮廓,找到车牌轮廓
count = 0
for contour in contours:
area = cv2.contourArea(contour) # 计算轮廓内区域的面积
# 10-1、得到矩形区域:左顶点坐标、宽和高
x, y, w, h = cv2.boundingRect(contour) # 获取坐标值和宽度、高度
# 10-2、获取轮廓区域的形状信息
perimeter = cv2.arcLength(contour, True) # 计算轮廓周长
# 以精度0.02近似拟合轮廓
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True) # 获取轮廓角点坐标
CornerNum = len(approx) # 轮廓角点的数量
# cv2.polylines(img_copy1, [approx], True, (0, 255, 0), 3)
# cv2.imshow('approx', img_copy1)
# cv2.waitKey(0)
# 10-2、判断宽高比例、面积、轮廓角点数量,截取符合图片
# if (w > h * 3 and w < h * 7 )and area>1000 and CornerNum<=5:
if h * 3 < w < h * 7 and area > 1000:
# print(count)
# print(f"CornerNum:{CornerNum},area:{area}")
# 截取车牌并显示
# print(x, y, w, h)
ROI = img[(y - 5):(y + h + 5), (x - 5):(x + w + 5)] # 高,宽
try:
count += 1
# fig = plt.figure(figsize=(6, 6))
# plt.imshow(ROI), plt.axis('off'), plt.title("img")
# plt.show()
return ROI
except:
print("ROI提取出错!")
return
pass
if __name__ == '__main__':
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' # 设置允许重复加载动态链接库,若不允许,使用jupyter运行时内核会挂掉
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=False, use_gpu=False,
lang="ch", show_log=False) # need to run only once to download and load model into memory
img = cv2.imread("C:/phone/016.jpg")
img = cv2.resize(img, (int(img.shape[1] * 0.5), int(img.shape[0] * 0.5)))
img = Morph_Distinguish(img.copy()) # 获取车牌ROI
if img is None:
print("没有提取到车牌")
exit()
fig = plt.figure(figsize=(6, 6))
plt.imshow(img), plt.axis('off'), plt.title("img")
plt.show()
ocr_text = ocr.ocr(img, cls=False)
for line in ocr_text:
number_plate = line[-1][-1][0]
print("车牌:", end="")
print(number_plate)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。