1 Star 0 Fork 0

yangxin/SubCharTokenization

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
run_pretraining.py 37.30 KB
一键复制 编辑 原始数据 按行查看 历史
NoviScl 提交于 2021-12-22 21:11 . push
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# ==================
import csv
import os
import time
import argparse
import random
import h5py
from tqdm import tqdm, trange
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, Dataset
from torch.utils.data.distributed import DistributedSampler
import math
from apex import amp
import multiprocessing
from tokenization import BertTokenizer
import modeling
from apex.optimizers import FusedLAMB
from schedulers import PolyWarmUpScheduler
from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from utils import is_main_process, format_step, get_world_size, get_rank
from apex.parallel import DistributedDataParallel as DDP
from schedulers import LinearWarmUpScheduler
from apex.parallel.distributed import flat_dist_call
# import amp_C
# import apex_C
from apex.amp import _amp_state
import dllogger
from concurrent.futures import ProcessPoolExecutor
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
skipped_steps = 0
# Track whether a SIGTERM (cluster time up) has been handled
timeout_sent = False
import signal
# handle SIGTERM sent from the scheduler and mark so we
# can gracefully save & exit
def signal_handler(sig, frame):
global timeout_sent
timeout_sent = True
signal.signal(signal.SIGTERM, signal_handler)
#Workaround because python functions are not picklable
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_pred_length, shared_list, args, worker_init):
train_data = pretraining_dataset(input_file=input_file, max_pred_length=max_pred_length)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=args.train_batch_size * args.n_gpu,
num_workers=4, worker_init_fn=worker_init,
pin_memory=True)
return train_dataloader, input_file
class pretraining_dataset(Dataset):
def __init__(self, input_file, max_pred_length):
self.input_file = input_file
self.max_pred_length = max_pred_length
f = h5py.File(input_file, "r")
keys = ['input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions', 'masked_lm_ids',
'next_sentence_labels']
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
'Denotes the total number of samples'
return len(self.inputs[0])
def __getitem__(self, index):
[input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(
np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)]
masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
index = self.max_pred_length
# store number of masked tokens in index
# padded_mask_indices = (masked_lm_positions == 0).nonzero()
padded_mask_indices = torch.nonzero(masked_lm_positions == 0, as_tuple=False)
if len(padded_mask_indices) != 0:
index = padded_mask_indices[0].item()
masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
return [input_ids, segment_ids, input_mask,
masked_lm_labels, next_sentence_labels]
# class BertPretrainingCriterion(torch.nn.Module):
# def __init__(self, vocab_size):
# super(BertPretrainingCriterion, self).__init__()
# self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
# self.vocab_size = vocab_size
# def forward(self, prediction_scores, seq_relationship_score, masked_lm_labels, next_sentence_labels):
# masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), masked_lm_labels.view(-1))
# next_sentence_loss = self.loss_fn(seq_relationship_score.view(-1, 2), next_sentence_labels.view(-1))
# total_loss = masked_lm_loss + next_sentence_loss
# return total_loss
## removed NSP from loss
class BertPretrainingCriterion(torch.nn.Module):
def __init__(self, vocab_size):
super(BertPretrainingCriterion, self).__init__()
self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
self.vocab_size = vocab_size
def forward(self, prediction_scores, masked_lm_labels):
masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), masked_lm_labels.view(-1))
total_loss = masked_lm_loss
return total_loss
def parse_arguments():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--input_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain .hdf5 files for the task.")
parser.add_argument("--config_file",
default=None,
type=str,
required=True,
help="The BERT model config")
parser.add_argument("--bert_model", default="bert-large-uncased", type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--init_checkpoint",
default=None,
type=str,
help="The initial checkpoint to start training from.")
parser.add_argument("--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--max_predictions_per_seq",
default=80,
type=int,
help="The maximum total of masked tokens in input sequence")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps",
default=1000,
type=float,
help="Total number of training steps to perform.")
parser.add_argument("--warmup_proportion",
default=0.01,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--local_rank",
type=int,
default=os.getenv('LOCAL_RANK', -1),
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Mixed precision training")
parser.add_argument('--amp',
default=False,
action='store_true',
help="Mixed precision training")
parser.add_argument('--loss_scale',
type=float, default=0.0,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--log_freq',
type=float, default=1.0,
help='frequency of logging loss.')
parser.add_argument('--checkpoint_activations',
default=False,
action='store_true',
help="Whether to use gradient checkpointing")
parser.add_argument("--resume_from_checkpoint",
default=False,
action='store_true',
help="Whether to resume training from checkpoint.")
parser.add_argument('--resume_step',
type=int,
default=-1,
help="Step to resume training from.")
parser.add_argument('--num_steps_per_checkpoint',
type=int,
default=100,
help="Number of update steps until a model checkpoint is saved to disk.")
parser.add_argument('--skip_checkpoint',
default=False,
action='store_true',
help="Whether to save checkpoints")
parser.add_argument('--phase2',
default=False,
action='store_true',
help="Whether to train with seq len 512")
parser.add_argument('--allreduce_post_accumulation',
default=False,
action='store_true',
help="Whether to do allreduces during gradient accumulation steps.")
parser.add_argument('--allreduce_post_accumulation_fp16',
default=False,
action='store_true',
help="Whether to do fp16 allreduce post accumulation.")
parser.add_argument('--phase1_end_step',
type=int,
default=7038,
help="Number of training steps in Phase1 - seq len 128")
parser.add_argument('--init_loss_scale',
type=int,
default=2**20,
help="Initial loss scaler value")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to do eval on dev set.")
parser.add_argument('--json-summary', type=str, default="results/dllogger.json",
help='If provided, the json summary will be written to'
'the specified file.')
parser.add_argument("--use_env",
action='store_true',
help="Whether to read local rank from ENVVAR")
parser.add_argument('--disable_progress_bar',
default=False,
action='store_true',
help='Disable tqdm progress bar')
parser.add_argument('--steps_this_run', type=int, default=-1,
help='If provided, only run this many steps before exiting')
args = parser.parse_args()
args.fp16 = args.fp16 or args.amp
if args.steps_this_run < 0:
args.steps_this_run = args.max_steps
return args
def setup_training(args):
assert (torch.cuda.is_available())
if args.local_rank == -1:
device = torch.device("cuda")
args.n_gpu = torch.cuda.device_count()
args.allreduce_post_accumulation = False
args.allreduce_post_accumulation_fp16 = False
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.n_gpu = 1
if args.gradient_accumulation_steps == 1:
args.allreduce_post_accumulation = False
args.allreduce_post_accumulation_fp16 = False
if is_main_process():
dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE,
filename=args.json_summary),
dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)])
else:
dllogger.init(backends=[])
print("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if args.train_batch_size % args.gradient_accumulation_steps != 0:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, batch size {} should be divisible".format(
args.gradient_accumulation_steps, args.train_batch_size))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
if not args.do_train:
raise ValueError(" `do_train` must be True.")
if not args.resume_from_checkpoint and os.path.exists(args.output_dir) and (
os.listdir(args.output_dir) and any([i.startswith('ckpt') for i in os.listdir(args.output_dir)])):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if (not args.resume_from_checkpoint or not os.path.exists(args.output_dir)) and is_main_process():
os.makedirs(args.output_dir, exist_ok=True)
return device, args
def prepare_model_and_optimizer(args, device):
# Prepare model
config = modeling.BertConfig.from_json_file(args.config_file)
# Padding for divisibility by 8
if config.vocab_size % 8 != 0:
config.vocab_size += 8 - (config.vocab_size % 8)
modeling.ACT2FN["bias_gelu"] = modeling.bias_gelu_training
# model = modeling.BertForPreTraining(config)
model = modeling.BertForMaskedLM(config)
checkpoint = None
if not args.resume_from_checkpoint:
global_step = 0
else:
if args.resume_step == -1 and not args.init_checkpoint:
model_names = [f for f in os.listdir(args.output_dir) if f.endswith(".pt")]
args.resume_step = max([int(x.split('.pt')[0].split('_')[1].strip()) for x in model_names])
print ("Resume training from: {}".format(args.resume_step))
# logger.info("Resume training from: {}".format(args.resume_step))
global_step = args.resume_step if not args.init_checkpoint else 0
if not args.init_checkpoint:
checkpoint = torch.load(os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step)), map_location="cpu")
else:
checkpoint = torch.load(args.init_checkpoint, map_location="cpu")
model.load_state_dict(checkpoint['model'], strict=False)
if args.phase2 and not args.init_checkpoint:
global_step -= args.phase1_end_step
if is_main_process():
print("resume step from ", args.resume_step)
model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
optimizer = FusedLAMB(optimizer_grouped_parameters,
lr=args.learning_rate)
lr_scheduler = PolyWarmUpScheduler(optimizer,
warmup=args.warmup_proportion,
total_steps=args.max_steps)
if args.fp16:
if args.loss_scale == 0:
model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", cast_model_outputs=torch.float16)
else:
model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale, cast_model_outputs=torch.float16)
amp._amp_state.loss_scalers[0]._loss_scale = args.init_loss_scale
model.checkpoint_activations(args.checkpoint_activations)
if args.resume_from_checkpoint:
if args.phase2 or args.init_checkpoint:
keys = list(checkpoint['optimizer']['state'].keys())
#Override hyperparameters from previous checkpoint
for key in keys:
checkpoint['optimizer']['state'][key]['step'] = global_step
for iter, item in enumerate(checkpoint['optimizer']['param_groups']):
checkpoint['optimizer']['param_groups'][iter]['step'] = global_step
checkpoint['optimizer']['param_groups'][iter]['t_total'] = args.max_steps
checkpoint['optimizer']['param_groups'][iter]['warmup'] = args.warmup_proportion
checkpoint['optimizer']['param_groups'][iter]['lr'] = args.learning_rate
optimizer.load_state_dict(checkpoint['optimizer']) # , strict=False)
# Restore AMP master parameters
if args.fp16:
optimizer._lazy_init_maybe_master_weights()
optimizer._amp_stash.lazy_init_called = True
optimizer.load_state_dict(checkpoint['optimizer'])
for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
param.data.copy_(saved_param.data)
if args.local_rank != -1:
if not args.allreduce_post_accumulation:
model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size())
else:
flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,) )
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
criterion = BertPretrainingCriterion(config.vocab_size)
return model, optimizer, lr_scheduler, checkpoint, global_step, criterion
def take_optimizer_step(args, optimizer, model, overflow_buf, global_step):
global skipped_steps
if args.allreduce_post_accumulation:
# manually allreduce gradients after all accumulation steps
# check for Inf/NaN
# 1. allocate an uninitialized buffer for flattened gradient
loss_scale = _amp_state.loss_scalers[0].loss_scale() if args.fp16 else 1
master_grads = [p.grad for p in amp.master_params(optimizer) if p.grad is not None]
flat_grad_size = sum(p.numel() for p in master_grads)
allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else torch.float32
flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
# 2. combine unflattening and predivision of unscaled 'raw' gradient
allreduced_views = apex_C.unflatten(flat_raw, master_grads)
overflow_buf.zero_()
amp_C.multi_tensor_scale(65536,
overflow_buf,
[master_grads, allreduced_views],
loss_scale / (get_world_size() * args.gradient_accumulation_steps))
# 3. sum gradient across ranks. Because of the predivision, this averages the gradient
torch.distributed.all_reduce(flat_raw)
# 4. combine unscaling and unflattening of allreduced gradient
overflow_buf.zero_()
amp_C.multi_tensor_scale(65536,
overflow_buf,
[allreduced_views, master_grads],
1./loss_scale)
# 5. update loss scale
if args.fp16:
scaler = _amp_state.loss_scalers[0]
old_overflow_buf = scaler._overflow_buf
scaler._overflow_buf = overflow_buf
had_overflow = scaler.update_scale()
scaler._overfloat_buf = old_overflow_buf
else:
had_overflow = 0
# 6. call optimizer step function
if had_overflow == 0:
optimizer.step()
global_step += 1
else:
# Overflow detected, print message and clear gradients
skipped_steps += 1
if is_main_process():
scaler = _amp_state.loss_scalers[0]
dllogger.log(step="PARAMETER", data={"loss_scale": scaler.loss_scale()})
if _amp_state.opt_properties.master_weights:
for param in optimizer._amp_stash.all_fp32_from_fp16_params:
param.grad = None
for param in model.parameters():
param.grad = None
else:
optimizer.step()
#optimizer.zero_grad()
for param in model.parameters():
param.grad = None
global_step += 1
return global_step
def evaluate(model, args, worker_init, device, criterion):
if is_main_process():
dllogger.log(step="PARAMETER", data={"eval_start": True})
dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
model.eval()
most_recent_ckpts_paths = []
average_loss = 0.0 # averaged loss every args.log_freq steps
pool = ProcessPoolExecutor(1)
thread = None
restored_data_loader = None
files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
os.path.isfile(os.path.join(args.input_dir, f)) and 'test' in f]
files.sort()
num_files = len(files)
f_start_id = 0
shared_file_list = {}
if torch.distributed.is_initialized() and get_world_size() > num_files:
remainder = get_world_size() % num_files
data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
else:
data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]
previous_file = data_file
if restored_data_loader is None:
train_data = pretraining_dataset(data_file, args.max_predictions_per_seq)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=args.train_batch_size * args.n_gpu,
num_workers=4, worker_init_fn=worker_init,
pin_memory=True)
else:
train_dataloader = restored_data_loader
restored_data_loader = None
overflow_buf = None
divisor = 0
if args.allreduce_post_accumulation:
overflow_buf = torch.cuda.IntTensor([0])
# print ("world_size: ", get_world_size())
for f_id in range(f_start_id, len(files) // get_world_size()):
# print ("F_ID: ", f_id)
if get_world_size() > num_files:
data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
else:
# print ("rank: ", get_rank())
# print ((f_id*get_world_size()+get_rank())%num_files)
data_file = files[(f_id*get_world_size()+get_rank())%num_files]
previous_file = data_file
dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init)
train_iter = train_dataloader
# f_loss = 0.0
for step, batch in enumerate(train_iter):
if batch[0].shape[0] != args.train_batch_size:
continue
batch = [t.to(device) for t in batch]
input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
# prediction_scores, seq_relationship_score = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
prediction_scores = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
loss = criterion(prediction_scores, masked_lm_labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
# f_loss += loss.item()
average_loss += loss.item()
divisor += 1
if divisor == 2000:
break
if divisor == 2000:
break
# print (f_loss)
del train_dataloader
train_dataloader, data_file = dataset_future.result(timeout=None)
average_loss = torch.tensor([average_loss]).cuda()
torch.distributed.all_reduce(average_loss)
average_loss = average_loss.item() / 8
if is_main_process():
dllogger.log(step="VALIDATION_LOSS", data={"eval_loss": average_loss / divisor})
print ("validation loss: ", average_loss / divisor)
return average_loss
def main():
global timeout_sent
args = parse_arguments()
random.seed(args.seed + args.local_rank)
np.random.seed(args.seed + args.local_rank)
torch.manual_seed(args.seed + args.local_rank)
torch.cuda.manual_seed(args.seed + args.local_rank)
worker_init = WorkerInitObj(args.seed + args.local_rank)
device, args = setup_training(args)
dllogger.log(step="PARAMETER", data={"Config": [str(args)]})
# Prepare optimizer
model, optimizer, lr_scheduler, checkpoint, global_step, criterion = prepare_model_and_optimizer(args, device)
if is_main_process():
dllogger.log(step="PARAMETER", data={"SEED": args.seed})
raw_train_start = None
if args.do_train:
# if args.do_eval:
# evaluate(model, args, worker_init, device, criterion)
if is_main_process():
dllogger.log(step="PARAMETER", data={"train_start": True})
dllogger.log(step="PARAMETER", data={"batch_size_per_gpu": args.train_batch_size})
dllogger.log(step="PARAMETER", data={"learning_rate": args.learning_rate})
model.train()
most_recent_ckpts_paths = []
average_loss = 0.0 # averaged loss every args.log_freq steps
epoch = 0
training_steps = 0
pool = ProcessPoolExecutor(1)
# Note: We loop infinitely over epochs, termination is handled via iteration count
while True:
thread = None
restored_data_loader = None
if not args.resume_from_checkpoint or epoch > 0 or (args.phase2 and global_step < 1) or args.init_checkpoint:
files = [os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir) if
os.path.isfile(os.path.join(args.input_dir, f)) and 'training' in f]
files.sort()
num_files = len(files)
random.Random(args.seed + epoch).shuffle(files)
f_start_id = 0
else:
f_start_id = checkpoint['files'][0]
files = checkpoint['files'][1:]
args.resume_from_checkpoint = False
num_files = len(files)
# may not exist in all checkpoints
epoch = checkpoint.get('epoch', 0)
restored_data_loader = checkpoint.get('data_loader', None)
shared_file_list = {}
if torch.distributed.is_initialized() and get_world_size() > num_files:
remainder = get_world_size() % num_files
data_file = files[(f_start_id*get_world_size()+get_rank() + remainder*f_start_id)%num_files]
else:
data_file = files[(f_start_id*get_world_size()+get_rank())%num_files]
previous_file = data_file
if restored_data_loader is None:
train_data = pretraining_dataset(data_file, args.max_predictions_per_seq)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler,
batch_size=args.train_batch_size * args.n_gpu,
num_workers=4, worker_init_fn=worker_init,
pin_memory=True)
# shared_file_list["0"] = (train_dataloader, data_file)
else:
train_dataloader = restored_data_loader
restored_data_loader = None
overflow_buf = None
if args.allreduce_post_accumulation:
overflow_buf = torch.cuda.IntTensor([0])
for f_id in range(f_start_id + 1, len(files)):
# print ("epoch: {}, f_id: {}".format(epoch, f_id))
if get_world_size() > num_files:
data_file = files[(f_id*get_world_size()+get_rank() + remainder*f_id)%num_files]
else:
data_file = files[(f_id*get_world_size()+get_rank())%num_files]
previous_file = data_file
dataset_future = pool.submit(create_pretraining_dataset, data_file, args.max_predictions_per_seq, shared_file_list, args, worker_init)
train_iter = train_dataloader
if raw_train_start is None:
raw_train_start = time.time()
for step, batch in enumerate(train_iter):
training_steps += 1
batch = [t.to(device) for t in batch]
input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
# prediction_scores, seq_relationship_score = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
prediction_scores = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
loss = criterion(prediction_scores, masked_lm_labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
divisor = args.gradient_accumulation_steps
if args.gradient_accumulation_steps > 1:
if not args.allreduce_post_accumulation:
# this division was merged into predivision
loss = loss / args.gradient_accumulation_steps
divisor = 1.0
if args.fp16:
with amp.scale_loss(loss, optimizer, delay_overflow_check=args.allreduce_post_accumulation) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
average_loss += loss.item()
if training_steps % args.gradient_accumulation_steps == 0:
lr_scheduler.step() # learning rate warmup
global_step = take_optimizer_step(args, optimizer, model, overflow_buf, global_step)
if global_step >= args.steps_this_run or timeout_sent:
train_time_raw = time.time() - raw_train_start
last_num_steps = int(training_steps / args.gradient_accumulation_steps) % args.log_freq
last_num_steps = args.log_freq if last_num_steps == 0 else last_num_steps
average_loss = torch.tensor(average_loss, dtype=torch.float32).cuda()
average_loss = average_loss / (last_num_steps * divisor)
if (torch.distributed.is_initialized()):
average_loss /= get_world_size()
torch.distributed.all_reduce(average_loss)
final_loss = average_loss.item()
if is_main_process():
dllogger.log(step=(epoch, global_step, ), data={"final_loss": final_loss})
elif training_steps % (args.log_freq * args.gradient_accumulation_steps) == 0:
if is_main_process():
dllogger.log(step=(epoch, global_step, ), data={"average_loss": average_loss / (args.log_freq * divisor),
"step_loss": loss.item() * args.gradient_accumulation_steps / divisor,
"learning_rate": optimizer.param_groups[0]['lr']})
average_loss = 0
if global_step >= args.steps_this_run or training_steps % (
args.num_steps_per_checkpoint * args.gradient_accumulation_steps) == 0 or timeout_sent:
# # eval on dev set
# if args.do_eval:
# evaluate(model, args, worker_init, device, criterion)
# model.train()
# if is_main_process() and not args.skip_checkpoint:
if not args.skip_checkpoint:
# Save a trained model
if is_main_process():
dllogger.log(step="PARAMETER", data={"checkpoint_step": global_step})
model_to_save = model.module if hasattr(model,
'module') else model # Only save the model it-self
if args.resume_step < 0 or not args.phase2:
output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step))
else:
output_save_file = os.path.join(args.output_dir, "ckpt_{}.pt".format(global_step + args.phase1_end_step))
if is_main_process():
if args.do_train:
torch.save({'model': model_to_save.state_dict(),
'optimizer': optimizer.state_dict(),
'master params': list(amp.master_params(optimizer)),
'files': [f_id] + files,
'epoch': epoch,
'data_loader': None if global_step >= args.max_steps else train_dataloader}, output_save_file)
most_recent_ckpts_paths.append(output_save_file)
## keep all checkpoints
# if len(most_recent_ckpts_paths) > 3:
# ckpt_to_be_removed = most_recent_ckpts_paths.pop(0)
# os.remove(ckpt_to_be_removed)
if args.do_eval:
evaluate(model, args, worker_init, device, criterion)
model.train()
# Exiting the training due to hitting max steps, or being sent a
# timeout from the cluster scheduler
if global_step >= args.steps_this_run or timeout_sent:
del train_dataloader
# thread.join()
return args, final_loss, train_time_raw, global_step
del train_dataloader
# thread.join()
# Make sure pool has finished and switch train_dataloader
# NOTE: Will block until complete
train_dataloader, data_file = dataset_future.result(timeout=None)
epoch += 1
if __name__ == "__main__":
now = time.time()
args, final_loss, train_time_raw, global_step = main()
gpu_count = args.n_gpu
global_step += args.phase1_end_step if (args.phase2 and args.resume_step > 0) else 0
if args.resume_step == -1:
args.resume_step = 0
if torch.distributed.is_initialized():
gpu_count = get_world_size()
if is_main_process():
e2e_time = time.time() - now
training_perf = args.train_batch_size * args.gradient_accumulation_steps * gpu_count\
* (global_step - args.resume_step + skipped_steps) / train_time_raw
dllogger.log(step=tuple(), data={"e2e_train_time": e2e_time, "training_sequences_per_second": training_perf,
"final_loss": final_loss, "raw_train_time": train_time_raw })
dllogger.flush()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/yx75/SubCharTokenization.git
git@gitee.com:yx75/SubCharTokenization.git
yx75
SubCharTokenization
SubCharTokenization
main

搜索帮助

23e8dbc6 1850385 7e0993f3 1850385