1 Star 0 Fork 0

ymc/Whisper-Finetune

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
finetune-whisper-base-chaoshan-maxepoch3.log 5.78 KB
一键复制 编辑 原始数据 按行查看 历史
ymc 提交于 2024-09-10 11:22 . 更新
训练开始时间:1715769253.5305796==========2024-05-15 18:34:13
训练开始时间:1715769253.6359603==========2024-05-15 18:34:13
训练开始时间:1715769375.2720761==========2024-05-15 18:36:15
训练开始时间:1715769375.275317==========2024-05-15 18:36:15
训练开始时间:1715769481.4785588==========2024-05-15 18:38:01
训练开始时间:1715769481.4974127==========2024-05-15 18:38:01
{'loss': 3.21, 'grad_norm': 0.978412926197052, 'learning_rate': 0.0009450934579439252, 'epoch': 0.33, 'step': 100}
{'eval_loss': 1.874383568763733, 'eval_runtime': 30.6912, 'eval_samples_per_second': 62.754, 'eval_steps_per_second': 15.705, 'epoch': 0.33, 'step': 100}
{'loss': 1.5914, 'grad_norm': 0.9715318083763123, 'learning_rate': 0.0008282710280373832, 'epoch': 0.66, 'step': 200}
{'eval_loss': 1.4279628992080688, 'eval_runtime': 30.4199, 'eval_samples_per_second': 63.314, 'eval_steps_per_second': 15.845, 'epoch': 0.66, 'step': 200}
{'loss': 1.263, 'grad_norm': 1.0385576486587524, 'learning_rate': 0.0007114485981308411, 'epoch': 0.99, 'step': 300}
{'eval_loss': 1.23609459400177, 'eval_runtime': 27.4883, 'eval_samples_per_second': 70.066, 'eval_steps_per_second': 17.535, 'epoch': 0.99, 'step': 300}
{'loss': 1.0045, 'grad_norm': 1.1613743305206299, 'learning_rate': 0.0005946261682242991, 'epoch': 1.32, 'step': 400}
{'eval_loss': 1.1470091342926025, 'eval_runtime': 27.3743, 'eval_samples_per_second': 70.358, 'eval_steps_per_second': 17.608, 'epoch': 1.32, 'step': 400}
{'loss': 0.9214, 'grad_norm': 0.9154635667800903, 'learning_rate': 0.00047780373831775704, 'epoch': 1.66, 'step': 500}
{'eval_loss': 1.0775120258331299, 'eval_runtime': 34.2792, 'eval_samples_per_second': 56.186, 'eval_steps_per_second': 14.061, 'epoch': 1.66, 'step': 500}
{'loss': 0.879, 'grad_norm': 1.0237587690353394, 'learning_rate': 0.00036098130841121493, 'epoch': 1.99, 'step': 600}
{'eval_loss': 1.0334092378616333, 'eval_runtime': 28.1171, 'eval_samples_per_second': 68.499, 'eval_steps_per_second': 17.143, 'epoch': 1.99, 'step': 600}
{'loss': 0.6785, 'grad_norm': 0.9368879795074463, 'learning_rate': 0.00024415887850467294, 'epoch': 2.32, 'step': 700}
{'eval_loss': 1.012408971786499, 'eval_runtime': 28.474, 'eval_samples_per_second': 67.641, 'eval_steps_per_second': 16.928, 'epoch': 2.32, 'step': 700}
{'loss': 0.6845, 'grad_norm': 0.9890350699424744, 'learning_rate': 0.00012733644859813084, 'epoch': 2.65, 'step': 800}
{'eval_loss': 0.9958565831184387, 'eval_runtime': 27.2019, 'eval_samples_per_second': 70.804, 'eval_steps_per_second': 17.719, 'epoch': 2.65, 'step': 800}
{'loss': 0.6965, 'grad_norm': 0.9516845345497131, 'learning_rate': 1.0514018691588785e-05, 'epoch': 2.98, 'step': 900}
{'eval_loss': 0.9860413074493408, 'eval_runtime': 28.4138, 'eval_samples_per_second': 67.784, 'eval_steps_per_second': 16.964, 'epoch': 2.98, 'step': 900}
{'train_runtime': 643.8321, 'train_samples_per_second': 22.455, 'train_steps_per_second': 1.407, 'total_flos': 9.740949024826982e+17, 'train_loss': 1.2097219028746582, 'epoch': 3.0, 'step': 906}
{'loss': 3.21, 'grad_norm': 0.978412926197052, 'learning_rate': 0.0009450934579439252, 'epoch': 0.33, 'step': 100}
{'eval_loss': 1.874383568763733, 'eval_runtime': 30.6875, 'eval_samples_per_second': 62.762, 'eval_steps_per_second': 15.707, 'epoch': 0.33, 'step': 100}
{'loss': 1.5914, 'grad_norm': 0.9715318083763123, 'learning_rate': 0.0008282710280373832, 'epoch': 0.66, 'step': 200}
{'eval_loss': 1.4279628992080688, 'eval_runtime': 30.4197, 'eval_samples_per_second': 63.314, 'eval_steps_per_second': 15.845, 'epoch': 0.66, 'step': 200}
{'loss': 1.263, 'grad_norm': 1.0385576486587524, 'learning_rate': 0.0007114485981308411, 'epoch': 0.99, 'step': 300}
{'eval_loss': 1.23609459400177, 'eval_runtime': 27.4873, 'eval_samples_per_second': 70.069, 'eval_steps_per_second': 17.535, 'epoch': 0.99, 'step': 300}
{'loss': 1.0045, 'grad_norm': 1.1613743305206299, 'learning_rate': 0.0005946261682242991, 'epoch': 1.32, 'step': 400}
{'eval_loss': 1.1470091342926025, 'eval_runtime': 27.371, 'eval_samples_per_second': 70.366, 'eval_steps_per_second': 17.61, 'epoch': 1.32, 'step': 400}
{'loss': 0.9214, 'grad_norm': 0.9154635667800903, 'learning_rate': 0.00047780373831775704, 'epoch': 1.66, 'step': 500}
{'eval_loss': 1.0775120258331299, 'eval_runtime': 34.2792, 'eval_samples_per_second': 56.186, 'eval_steps_per_second': 14.061, 'epoch': 1.66, 'step': 500}
{'loss': 0.879, 'grad_norm': 1.0237587690353394, 'learning_rate': 0.00036098130841121493, 'epoch': 1.99, 'step': 600}
{'eval_loss': 1.0334092378616333, 'eval_runtime': 28.1142, 'eval_samples_per_second': 68.506, 'eval_steps_per_second': 17.144, 'epoch': 1.99, 'step': 600}
{'loss': 0.6785, 'grad_norm': 0.9368879795074463, 'learning_rate': 0.00024415887850467294, 'epoch': 2.32, 'step': 700}
{'eval_loss': 1.012408971786499, 'eval_runtime': 28.471, 'eval_samples_per_second': 67.648, 'eval_steps_per_second': 16.929, 'epoch': 2.32, 'step': 700}
{'loss': 0.6845, 'grad_norm': 0.9890350699424744, 'learning_rate': 0.00012733644859813084, 'epoch': 2.65, 'step': 800}
{'eval_loss': 0.9958565831184387, 'eval_runtime': 27.2016, 'eval_samples_per_second': 70.805, 'eval_steps_per_second': 17.72, 'epoch': 2.65, 'step': 800}
{'loss': 0.6965, 'grad_norm': 0.9516845345497131, 'learning_rate': 1.0514018691588785e-05, 'epoch': 2.98, 'step': 900}
{'eval_loss': 0.9860413074493408, 'eval_runtime': 28.4104, 'eval_samples_per_second': 67.792, 'eval_steps_per_second': 16.966, 'epoch': 2.98, 'step': 900}
{'train_runtime': 643.0353, 'train_samples_per_second': 22.482, 'train_steps_per_second': 1.409, 'total_flos': 9.740949024826982e+17, 'train_loss': 1.2101123338240398, 'epoch': 3.0, 'step': 906}
训练结束时间:1715770127.3676617==========2024-05-15 18:48:47
训练运行时间:645.889102935791
训练结束时间:1715770147.532765==========2024-05-15 18:49:07
训练运行时间:666.035352230072
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ymc_fighting/Whisper-Finetune.git
git@gitee.com:ymc_fighting/Whisper-Finetune.git
ymc_fighting
Whisper-Finetune
Whisper-Finetune
master

搜索帮助