代码拉取完成,页面将自动刷新
import torch
import logging
from utils.metrics import PRMetric
logger = logging.getLogger(__name__)
def train(epoch, model, dataloader, optimizer, criterion, device, writer, cfg):
model.train()
metric = PRMetric()
losses = []
for batch_idx, (x, y) in enumerate(dataloader, 1):
for key, value in x.items():
# 让键指向放入device设备后的value
x[key] = value.to(device)
y = y.to(device)
# 清零上次迭代的梯度
optimizer.zero_grad()
y_pred = model(x)
if cfg.model_name == 'capsule':
loss = model.loss(y_pred, y)
else:
loss = criterion(y_pred, y)
loss.backward()
# 更新模型参数
optimizer.step()
metric.update(y_true=y, y_pred=y_pred)
losses.append(loss.item())
# TODO batch_size * 10 正确吗?
data_total = len(dataloader.dataset)
data_cal = data_total if batch_idx == len(dataloader) else batch_idx * len(y)
if (cfg.train_log and batch_idx % cfg.log_interval == 0) or batch_idx == len(dataloader):
# p r f1 皆为 macro,因为micro时三者相同,定义为acc
acc, p, r, f1 = metric.compute()
logger.info(f'Train Epoch {epoch}: [{data_cal}/{data_total}]({100. * data_cal / data_total:.0f}%)\t'
f'Loss: {loss.item():.6f}\t metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
if cfg.show_plot and not cfg.only_comparison_plot and cfg.plot_utils == 'tensorboard':
for i in range(len(losses)):
writer.add_scalar(f'epoch_{epoch}_training_loss', losses[i], i)
return losses[-1]
def validate(epoch, model, dataloader, criterion, device, cfg):
model.eval()
metric = PRMetric()
losses = []
for batch_idx, (x, y) in enumerate(dataloader, 1):
for key, value in x.items():
x[key] = value.to(device)
y = y.to(device)
with torch.no_grad():
y_pred = model(x)
if cfg.model_name == 'capsule':
loss = model.loss(y_pred, y)
else:
loss = criterion(y_pred, y)
metric.update(y_true=y, y_pred=y_pred)
losses.append(loss.item())
loss = sum(losses) / len(losses)
acc, p, r, f1 = metric.compute()
data_total = len(dataloader.dataset)
if epoch >= 0:
logger.info(f'Valid Epoch {epoch}: [{data_total}/{data_total}](100%)\t Loss: {loss:.6f}\t'
f'metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
else:
logger.info(f'Test Data: [{data_total}/{data_total}](100%)\t Loss: {loss:.6f}\t'
f'metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
return f1, loss
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。