3 Star 0 Fork 0

尹平辉/tangram

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
picture_direction.py 18.61 KB
一键复制 编辑 原始数据 按行查看 历史
gong 提交于 2019-04-23 15:15 . a little
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
import cv2
import numpy as np
'''
1、预处理---原图形处理,得到源坐标点即特征点(后续数据工具处理得到,这里只是方便识别调配)
2、读取摄像头后,根据颜色区间不同,提取roi区域,图像滤波平滑处理(这里使用中值滤波)
3、根据面积最大区域,拟合多边形,并返回特征点approx**,用作后续match
4、match,点点距离
待优化:
1、颜色提取:白平衡?or 深度学习?(橙色识别问题很大)
2、匹配算法
3、有时异常报错,怀疑也是颜色的锅。。。。。。
'''
#原图形处理
frame1 = cv2.imread('D:/python/opencv/picture/test1.jpg')
r,c,h = frame1.shape
frame1 = cv2.resize(frame1,(int(c/2),int(r/2)))
img11 = cv2.cvtColor(frame1,cv2.COLOR_BGR2HSV)
#紫色三角
lopul1 = np.array([125,20,30])
uppul1 = np.array([155,255,255])
maskpul1 = cv2.inRange(img11,lopul1,uppul1)
respul1 = cv2.bitwise_and(frame1,frame1,mask = maskpul1)
kernel = np.ones((5,5),np.uint8)
maskpul1 = cv2.medianBlur(maskpul1, 5)#中值
maskpul1 = cv2.morphologyEx(maskpul1,cv2.MORPH_OPEN,kernel) ##效果最好
contpul1,hierpul1 = cv2.findContours(maskpul1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #轮廓检索
cntpul1 = contpul1[0]
max_pul1 = cv2.contourArea(cntpul1)
for contp1 in contpul1:
if cv2.contourArea(contp1) > max_pul1:
cntpul1 = contp1
max_pul1 = cv2.contourArea(contp1) #最大面积确定roi
perimeterpul1 = cv2.arcLength(cntpul1,True)
epsilonpul1 = 0.05*cv2.arcLength(cntpul1,True) #拟合逼近 常数值越大,拟合度越高,信息丢失越明显
approxpul1 = cv2.approxPolyDP(cntpul1,epsilonpul1,True) #逼近点
hullpul1 = cv2.convexHull(cntpul1)
cv2.imshow('respul1',respul1)
cv2.imshow('maskpul1',maskpul1)
#红色三角
lored11 = np.array([156,20,46])
upred11 = np.array([180,255,255])
maskred1 = cv2.inRange(img11,lored11,upred11)
resred1 = cv2.bitwise_and(frame1,frame1,mask = maskred1)
contred1,hierred1 = cv2.findContours(maskred1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cntred1 = contred1[0]
max_red1 = cv2.contourArea(cntred1)
for contr1 in contred1:
if cv2.contourArea(contr1) > max_red1:
max_red1 = cv2.contourArea(contr1)
cntred1 = contr1
perimeterred1 = cv2.arcLength (cntred1,True)
epsilonred1 = 0.03*cv2.arcLength(cntred1,True)
approxred1 = cv2.approxPolyDP(cntred1,epsilonred1,True)
hullred1 = cv2.convexHull(cntred1)
cv2.imshow('resred1',resred1)
cv2.imshow('maskred1',maskred1)
#黄色三角
loyell1 = np.array([20,43,46])
upyell1 = np.array([30,255,255])
maskyell1 = cv2.inRange(img11,loyell1,upyell1)
resyell1 = cv2.bitwise_and(frame1,frame1,mask = maskyell1)
contyell1,hieryell1 = cv2.findContours(maskyell1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
cntyell1 = contyell1[0]
max_yell1 = cv2.contourArea(cntyell1)
for conty1 in contyell1:
if cv2.contourArea(conty1) > max_yell1:
max_yell1 = cv2.contourArea(conty1)
cntyell1 = conty1
perimeteryell1 = cv2.arcLength (cntyell1,True)
epsilonyell1 = 0.05*cv2.arcLength(cntyell1,True)
approxyell1 = cv2.approxPolyDP(cntyell1,epsilonyell1,True)
hullyell1 = cv2.convexHull (cntyell1)
cv2.imshow('maskyell1',maskyell1)
cv2.imshow('resyell1',resyell1)
#蓝色三角
loblue1 = np.array([80,60,46])
upblue1 = np.array([124,255,255])
maskblue1 = cv2.inRange(img11,loblue1,upblue1)
resblue1 = cv2.bitwise_and(frame1,frame1,mask = maskblue1)
contblue1,hierblue1 = cv2.findContours(maskblue1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
cntblue1 = contblue1[0]
max_blue1 = cv2.contourArea(cntblue1)
for contb1 in contblue1:
if cv2.contourArea(contb1) > max_blue1:
max_blue1 = cv2.contourArea(contb1)
cntblue1 = contb1
perimeterblue1 = cv2.arcLength (cntblue1,True)
epsilonblue1 = 0.05*cv2.arcLength(cntblue1,True)
approxblue1 = cv2.approxPolyDP(cntblue1,epsilonblue1,True)
hullblue1 = cv2.convexHull (cntblue1)
cv2.imshow('maskblue1',maskblue1)
cv2.imshow('resblue1',resblue1)
#绿色正方形
logre1 = np.array([31,43,46])
upgre1 = np.array([78,255,255])
maskgre1 = cv2.inRange(img11,logre1,upgre1)
resgre1 = cv2.bitwise_and(frame1,frame1,mask = maskgre1)
contgre1,hiergre1 = cv2.findContours(maskgre1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cntgre1 = contgre1[0]
max_gre1 = cv2.contourArea(cntgre1)
for contg1 in contgre1:
if cv2.contourArea(contg1) > max_gre1:
max_gre1 = cv2.contourArea(contg1)
cntgre1 = contg1
perimetergre1 = cv2.arcLength (cntgre1,True)
epsilongre1 = 0.05*cv2.arcLength(cntgre1,True)
approxgre1 = cv2.approxPolyDP(cntgre1,epsilongre1,True)
hullgre1 = cv2.convexHull (cntgre1)
cv2.imshow('maskgre1',maskgre1)
cv2.imshow('resgre1',resgre1)
#橙色平行四边形
loora1 = np.array([11,40,46])
upora1 = np.array([20,255,255])
maskora1 = cv2.inRange(img11,loora1,upora1)
resora1 = cv2.bitwise_and(frame1,frame1,mask = maskora1)
contora1,hierora1 = cv2.findContours(maskora1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
cntora1 = contora1[0]
max_ora1 = cv2.contourArea(cntora1)
for conto1 in contora1:
if cv2.contourArea(conto1) > max_ora1:
max_ora1 = cv2.contourArea(conto1)
cntora1 = conto1
perimeterora1 = cv2.arcLength (cntora1,True)
epsilonora1 = 0.05*cv2.arcLength(cntora1,True)
approxora1 = cv2.approxPolyDP(cntora1,epsilonora1,True)
hullora1 = cv2.convexHull (cntora1)
cv2.imshow('maskora1',maskora1)
cv2.imshow('resora1',resora1)
#cv2.drawContours(frame1, cntpul1, -1, (93, 25, 103), 3)
cv2.drawContours(frame1, approxpul1, -1, (0, 0, 0), 3)
cv2.polylines (frame1,[approxpul1],True,(255,0,0),3)
#cv2.drawContours(frame1, cntred1, -1, (0,0,255), 3)
cv2.drawContours(frame1, approxred1, -1, (0,0,0), 3)
cv2.polylines (frame1,[approxred1],True,(255,0,0),3)
#cv2.drawContours(frame1,cntora1,-1,(0,172,225),3)
cv2.drawContours(frame1,approxora1,-1,(0,0,0),3)
cv2.polylines (frame1,[approxora1],True,(255,0,0),3)
#cv2.drawContours(frame1,cntgre1,-1,(0,255,0),3)
cv2.drawContours(frame1,approxgre1,-1,(0,0,255),3)
cv2.polylines (frame1,[approxgre1],True,(255,0,0),3)
#cv2.drawContours(frame1,cntblue1,-1,(255,0,0),3)
cv2.drawContours(frame1,approxblue1,-1,(0,0,0),3)
cv2.polylines (frame1,[approxblue1],True,(255,0,0),3)
#cv2.drawContours(frame1,cntyell1,-1,(0,249,225),3)
cv2.drawContours(frame1,approxyell1,-1,(0,0,0),3)
cv2.polylines (frame1,[approxyell1],True,(255,0,0),3)
cv2.imshow('photo',frame1)
cntt = [approxblue1,approxgre1,approxred1,approxpul1,approxyell1,approxora1]
print(cntt)
print(approxblue1.size)
#cntt = np.vstack((approxblue1,approxgre1,approxred1,approxpul1,approxyell1,approxora1))
#print(cntt)
cap = cv2.VideoCapture(0)
while (1):
ret,frame = cap.read()
frame = cv2.flip(frame,1)
(a,b,d) = frame.shape
#frame = cv2.resize(frame,(2*b,2*a))
#frame = frame[int(c/2),int(r/2)]
img1 = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
#img1 = cv2.GaussianBlur(img1,(3,3),3)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
# img1 = cv2.erode (img1,kernel)
#img1 = cv2.dilate (img1,kernel)
#紫色三角
lopul = np.array([125,10,46])
uppul = np.array([155,255,255])
maskpul = cv2.inRange(img1,lopul,uppul)
respul = cv2.bitwise_and(frame,frame,mask = maskpul)
kernel = np.ones((5,5),np.uint8)
pul_median = cv2.medianBlur(maskpul, 5)#中值
pul_median = cv2.morphologyEx(pul_median,cv2.MORPH_OPEN,kernel)
contpul,hierpul = cv2.findContours(pul_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#原位置轮廓
cv2.polylines(frame,[approxpul1],True,(93,25,103),1)
if contpul != []:
cntpul = contpul[0]
max_pul = cv2.contourArea(cntpul)
for contp in contpul:
if cv2.contourArea(contp) > max_pul:
cntpul = contp
max_pul = cv2.contourArea(contp)
perimeterpul = cv2.arcLength(cntpul,True)
epsilonpul = 0.05*cv2.arcLength(cntpul,True)
approxpul = cv2.approxPolyDP(cntpul,epsilonpul,True)
hullpul = cv2.convexHull(cntpul)
#cv2.drawContours(frame,hullpul,-1,(0,255,0),8)
if approxpul.size <7:
cv2.drawContours(frame,approxpul,-1,(0,0,0),8)
#cv2.drawContours(frame, cntpul, -1, (93, 25, 103), 3)
ds0 = np.sqrt(np.sum(np.square(approxpul[0] - approxpul1[0])))
ds1 = np.sqrt(np.sum(np.square(approxpul[1] - approxpul1[1])))
ds2 = np.sqrt(np.sum(np.square(approxpul[2] - approxpul1[2])))
if ds0 < 20 and ds1 < 20 and ds2 < 20:
cv2.polylines (frame,[approxpul],True,(255,0,0),3)
cv2.imshow('respul',respul)
cv2.imshow('maskpul',maskpul)
else :
approxpul = np.array([[[0,0]]],dtype=np.int32)
cntpul = []
#红色三角
lored1 = np.array([0,150,46])
upred1 = np.array([8,255,255])
#lored1 = np.array([156,43,46])
#upred1 = np.array([180,255,255])
maskred = cv2.inRange(img1,lored1,upred1)
resred = cv2.bitwise_and(frame,frame,mask = maskred)
kernel = np.ones((5,5),np.uint8)
red_median = cv2.medianBlur(maskred, 5)#中值
red_median = cv2.morphologyEx(red_median,cv2.MORPH_OPEN,kernel)
contred,hierred = cv2.findContours(red_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#原图位置与轮廓
cv2.polylines(frame,[approxred1],True,(0,0,255),1)
if contred != []:
cntred = contred[0]
max_red = cv2.contourArea(cntred)
for contr in contred:
if cv2.contourArea(contr) > max_red:
max_red = cv2.contourArea(contr)
cntred = contr
perimeterred = cv2.arcLength (cntred,True)
epsilonred = 0.05*cv2.arcLength(cntred,True)
approxred = cv2.approxPolyDP(cntred,epsilonred,True)
hullred = cv2.convexHull(cntred)
cntred11 = cntred1
approxred11 = approxred1
if approxred.size < 7:
cv2.drawContours(frame,approxred,-1,(0,0,0),8)
#cv2.drawContours(frame, cntpul, -1, (93, 25, 103), 3)
ds0 = np.sqrt(np.sum(np.square(approxred[0] - approxred1[0])))
ds1 = np.sqrt(np.sum(np.square(approxred[1] - approxred1[1])))
ds2 = np.sqrt(np.sum(np.square(approxred[2] - approxred1[2])))
if ds0 < 20 and ds1 < 20 and ds2 < 20:
cv2.polylines (frame,[approxred],True,(255,0,0),3)
cv2.imshow('resred',resred)
cv2.imshow('maskred',maskred)
else :
approxred = np.array([[[0,0]]],dtype=np.int32)
cntred = []
#黄色三角
loyell = np.array([32,60,46])
upyell = np.array([37,255,255])
#loyell = np.array([20,43,46])
#upyell = np.array([30,255,255])
maskyell = cv2.inRange(img1,loyell,upyell)
resyell = cv2.bitwise_and(frame,frame,mask = maskyell)
kernel = np.ones((5,5),np.uint8)
yell_median = cv2.medianBlur(maskyell, 5)#中值
yell_median = cv2.morphologyEx(yell_median,cv2.MORPH_OPEN,kernel)
contyell,hieryell = cv2.findContours(yell_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#画原图位置点轮廓
cv2.polylines(frame,[approxyell1],True,(0,249,255),1)
if contyell != []:
cntyell = contyell[0]
max_yell = cv2.contourArea(cntyell)
for conty in contyell:
if cv2.contourArea(conty) > max_yell:
max_yell = cv2.contourArea(conty)
cntyell = conty
perimeteryell = cv2.arcLength (cntyell,True)
epsilonyell = 0.05*cv2.arcLength(cntyell,True)
approxyell = cv2.approxPolyDP(cntyell,epsilonyell,True)
#hullyell = cv2.convexHull (cntyell)
cntyell11 = cntyell1
approxyell11 = approxyell1
if approxyell.size < 9:
#cv2.drawContours(frame,cntyell,-1,(0,249,225),3)
cv2.drawContours(frame,approxyell,-1,(0,0,0),8)
#cv2.polylines (frame,[approxyell],True,(255,0,0),3)
ds0 = np.sqrt(np.sum(np.square(approxyell[0] - approxyell1[0])))
ds1 = np.sqrt(np.sum(np.square(approxyell[1] - approxyell1[1])))
ds2 = np.sqrt(np.sum(np.square(approxyell[2] - approxyell1[2])))
if ds0 < 20 and ds1 < 20 and ds2 < 20:
cv2.polylines (frame,[approxyell],True,(255,0,0),3)
cv2.imshow('maskyell',maskyell)
cv2.imshow('resyell',resyell)
cv2.imshow('yell_median',yell_median)
else :
approxyell = np.array([[[0,0]]],dtype=np.int32)
cntyell = []
#蓝色三角
loblue = np.array([99,60,46])
upblue = np.array([109,255,255])
#loblue = np.array([80,60,46])
#upblue = np.array([124,255,255])
maskblue = cv2.inRange(img1,loblue,upblue)
resblue = cv2.bitwise_and(frame,frame,mask = maskblue)
kernel = np.ones((5,5),np.uint8)
blue_median = cv2.medianBlur(maskblue, 5)#中值
blue_median = cv2.morphologyEx(blue_median,cv2.MORPH_OPEN,kernel)
contblue,hierblue = cv2.findContours(blue_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#画蓝色原图位置与轮廓
cv2.polylines(frame,[approxblue1],True,(255,0,0),1)
if contblue != []:
cntblue = contblue[0]
max_blue = cv2.contourArea(cntblue)
for contb in contblue:
if cv2.contourArea(contb) > max_blue:
max_blue = cv2.contourArea(contb)
cntblue = contb
perimeterblue = cv2.arcLength (cntblue,True)
epsilonblue = 0.05*cv2.arcLength(cntblue,True)
approxblue = cv2.approxPolyDP(cntblue,epsilonblue,True)
#hullblue = cv2.convexHull (cntblue)
cntblue11 = cntblue1
approxblue11 = approxblue1
if approxblue.size < 8:
#cv2.drawContours(frame,cntblue,-1,(0,249,225),3)
cv2.drawContours(frame,approxblue,-1,(0,0,0),8)
#cv2.polylines (frame,[approxblue],True,(255,0,0),3)
ds0 = np.sqrt(np.sum(np.square(approxblue[0] - approxblue1[0])))
ds1 = np.sqrt(np.sum(np.square(approxblue[1] - approxblue1[1])))
ds2 = np.sqrt(np.sum(np.square(approxblue[2] - approxblue1[2])))
if ds0 < 20 and ds1 < 20 and ds2 < 20:
cv2.polylines (frame,[approxblue],True,(255,0,0),3)
cv2.imshow('maskblue',maskblue)
cv2.imshow('resblue',resblue)
cv2.imshow('blue_median',blue_median)
else :
approxblue = np.array([[[0,0]]],dtype=np.int32)
cntblue = []
#绿色正方形
#logre = np.array([40,60,46])
#upgre = np.array([60,255,255])
logre = np.array([31,43,46])
upgre = np.array([78,255,255])
maskgre = cv2.inRange(img1,logre,upgre)
resgre = cv2.bitwise_and(frame,frame,mask = maskgre)
kernel = np.ones((5,5),np.uint8)
gre_median = cv2.medianBlur(maskgre, 5)#中值
gre_median = cv2.morphologyEx(gre_median,cv2.MORPH_OPEN,kernel)
contgre,hiergre = cv2.findContours(gre_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#画原图位置点轮廓
cv2.polylines(frame,[approxgre1],True,(0,249,255),1)
if contgre != []:
cntgre = contgre[0]
max_gre = cv2.contourArea(cntgre)
for contg in contgre:
if cv2.contourArea(contg) > max_gre:
max_gre = cv2.contourArea(contg)
cntgre = contg
perimetergre = cv2.arcLength (cntgre,True)
epsilongre = 0.1*cv2.arcLength(cntgre,True)
approxgre = cv2.approxPolyDP(cntgre,epsilongre,True)
cntgre11 = cntgre1
approxgre11 = approxgre1
if approxgre.size < 10:
#cv2.drawContours(frame,cntgre,-1,(0,249,225),3)
cv2.drawContours(frame,approxgre,-1,(0,0,0),8)
#cv2.polylines (frame,[approxgre],True,(255,0,0),3)
ds0 = np.sqrt(np.sum(np.square(approxgre[0] - approxgre1[0])))
ds1 = np.sqrt(np.sum(np.square(approxgre[1] - approxgre1[1])))
ds2 = np.sqrt(np.sum(np.square(approxgre[2] - approxgre1[2])))
ds3 = np.sqrt(np.sum(np.square(approxgre[3] - approxgre1[3])))
if ds0 < 20 and ds1 < 20 and ds2 < 20 and ds3 < 20:
cv2.polylines (frame,[approxgre],True,(255,0,0),3)
cv2.imshow('maskgre',maskgre)
cv2.imshow('resgre',resgre)
cv2.imshow('gre_median',gre_median)
else :
approxgre = np.array([[[0,0]]],dtype=np.int32)
cntgre = []
#橙色平行四边形
#loora = np.array([15,100,46])
#upora = np.array([25,255,255])
loora = np.array([11,50,40])
upora = np.array([17,255,255])
maskora = cv2.inRange(img1,loora,upora)
resora = cv2.bitwise_and(frame,frame,mask = maskora)
kernel = np.ones((5,5),np.uint8)
ora_median = cv2.medianBlur(maskora, 5)#中值
ora_median = cv2.morphologyEx(ora_median,cv2.MORPH_OPEN,kernel)
contora,hierora = cv2.findContours(ora_median,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE )
#画原图位置点轮廓
cv2.polylines(frame,[approxora1],True,(0,249,255),1)
if contora != []:
cntora = contora[0]
max_ora = cv2.contourArea(cntora)
for conto in contora:
if cv2.contourArea(conto) > max_ora:
max_ora = cv2.contourArea(conto)
cntora = conto
perimeterora = cv2.arcLength (cntora,True)
epsilonora = 0.03*cv2.arcLength(cntora,True)
approxora = cv2.approxPolyDP(cntora,epsilonora,True)
cntora11 = cntora1
approxora11 = approxora1
if approxora.size < 10:
#cv2.drawContours(frame,cntora,-1,(0,249,225),3)
cv2.drawContours(frame,approxora,-1,(0,0,0),8)
#cv2.polylines (frame,[approxora],True,(255,0,0),3)
ds0 = np.sqrt(np.sum(np.square(approxora[0] - approxora1[0])))
ds1 = np.sqrt(np.sum(np.square(approxora[1] - approxora1[1])))
ds2 = np.sqrt(np.sum(np.square(approxora[2] - approxora1[2])))
ds3 = np.sqrt(np.sum(np.square(approxora[3] - approxora1[3])))
if ds0 < 20 and ds1 < 20 and ds2 < 20 and ds3 < 20:
cv2.polylines (frame,[approxora],True,(255,0,0),3)
cv2.imshow('maskora',maskora)
cv2.imshow('resora',resora)
cv2.imshow('ora_median',ora_median)
else :
approxora = np.array([[[0,0]]],dtype=np.int32)
cntora = []
#不知颜色三角形....
cv2.imshow('frame',frame)
k = cv2.waitKey(1) & 0xFF
if k == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/yinpinghui/tangram.git
git@gitee.com:yinpinghui/tangram.git
yinpinghui
tangram
tangram
master

搜索帮助