代码拉取完成,页面将自动刷新
#-------------------------------------#
# 创建YOLO类
#-------------------------------------#
import colorsys
import os
import time
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from nets.yolo3 import YoloBody
from utils.utils import (DecodeBox, letterbox_image, non_max_suppression,
yolo_correct_boxes)
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和classes_path都需要修改!
# 如果出现shape不匹配,一定要注意
# 训练时的model_path和classes_path参数的修改
#--------------------------------------------#
class YOLO(object):
_defaults = {
"model_path" : 'model_data/yolo_weights.pth',
"anchors_path" : 'model_data/yolo_anchors.txt',
"classes_path" : 'model_data/coco_classes.txt',
"model_image_size" : (416, 416, 3),
"confidence" : 0.5,
"iou" : 0.3,
"cuda" : True,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : False,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化YOLO
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的先验框
#---------------------------------------------------#
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]
#---------------------------------------------------#
# 生成模型
#---------------------------------------------------#
def generate(self):
self.num_classes = len(self.class_names)
#---------------------------------------------------#
# 建立yolov3模型
#---------------------------------------------------#
self.net = YoloBody(self.anchors, self.num_classes)
#---------------------------------------------------#
# 载入yolov3模型的权重
#---------------------------------------------------#
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(self.model_path, map_location=device)
self.net.load_state_dict(state_dict)
self.net = self.net.eval()
if self.cuda:
self.net = nn.DataParallel(self.net)
self.net = self.net.cuda()
#---------------------------------------------------#
# 建立三个特征层解码用的工具
#---------------------------------------------------#
self.yolo_decodes = []
for i in range(3):
self.yolo_decodes.append(DecodeBox(self.anchors[i], self.num_classes, (self.model_image_size[1], self.model_image_size[0])))
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
#---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
#---------------------------------------------------------#
image = image.convert('RGB')
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
crop_img = np.array(letterbox_image(image, (self.model_image_size[1], self.model_image_size[0])))
else:
crop_img = image.resize((self.model_image_size[1], self.model_image_size[0]), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
images = [photo]
with torch.no_grad():
images = torch.from_numpy(np.asarray(images))
if self.cuda:
images = images.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
#---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
#---------------------------------------------------------#
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, self.num_classes, conf_thres=self.confidence, nms_thres=self.iou)
#---------------------------------------------------------#
# 如果没有检测出物体,返回原图
#---------------------------------------------------------#
try :
batch_detections = batch_detections[0].cpu().numpy()
except:
return image
#---------------------------------------------------------#
# 对预测框进行得分筛选
#---------------------------------------------------------#
top_index = batch_detections[:, 4] * batch_detections[:, 5] > self.confidence
top_conf = batch_detections[top_index, 4] * batch_detections[top_index, 5]
top_label = np.array(batch_detections[top_index, -1],np.int32)
top_bboxes = np.array(batch_detections[top_index, :4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
#-----------------------------------------------------------------#
# 在图像传入网络预测前会进行letterbox_image给图像周围添加灰条
# 因此生成的top_bboxes是相对于有灰条的图像的
# 我们需要对其进行修改,去除灰条的部分。
#-----------------------------------------------------------------#
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin, top_xmin, top_ymax, top_xmax, np.array([self.model_image_size[0],self.model_image_size[1]]), image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = max((np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0], 1)
for i, c in enumerate(top_label):
predicted_class = self.class_names[c]
score = top_conf[i]
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[self.class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[self.class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image
def get_FPS(self, image, test_interval):
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
crop_img = np.array(letterbox_image(image, (self.model_image_size[1],self.model_image_size[0])))
else:
crop_img = image.convert('RGB')
crop_img = crop_img.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
images = [photo]
with torch.no_grad():
images = torch.from_numpy(np.asarray(images))
if self.cuda:
images = images.cuda()
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
try:
batch_detections = batch_detections[0].cpu().numpy()
top_index = batch_detections[:,4]*batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
except:
pass
t1 = time.time()
for _ in range(test_interval):
with torch.no_grad():
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
try:
batch_detections = batch_detections[0].cpu().numpy()
top_index = batch_detections[:,4]*batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
except:
pass
t2 = time.time()
tact_time = (t2 - t1) / test_interval
return tact_time
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。