1 Star 0 Fork 0

yasuo_hao/Yet-Another-EfficientDet-Pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
efficientdet_test_videos.py 3.93 KB
一键复制 编辑 原始数据 按行查看 历史
mohammad javadi 提交于 2020-10-20 13:24 . Added d8 input size to the list
# Core Author: Zylo117
# Script's Author: winter2897
"""
Simple Inference Script of EfficientDet-Pytorch for detecting objects on webcam
"""
import time
import torch
import cv2
import numpy as np
from torch.backends import cudnn
from backbone import EfficientDetBackbone
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, preprocess_video
# Video's path
video_src = 'videotest.mp4' # set int to use webcam, set str to read from a video file
compound_coef = 0
force_input_size = None # set None to use default size
threshold = 0.2
iou_threshold = 0.2
use_cuda = True
use_float16 = False
cudnn.fastest = True
cudnn.benchmark = True
obj_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', '', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', '', 'backpack', 'umbrella', '', '', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', '', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', '', 'dining table', '', '', 'toilet', '', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', '', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush']
# tf bilinear interpolation is different from any other's, just make do
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
input_size = input_sizes[compound_coef] if force_input_size is None else force_input_size
# load model
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list))
model.load_state_dict(torch.load(f'weights/efficientdet-d{compound_coef}.pth'))
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
# function for display
def display(preds, imgs):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
return imgs[i]
for j in range(len(preds[i]['rois'])):
(x1, y1, x2, y2) = preds[i]['rois'][j].astype(np.int)
cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
cv2.putText(imgs[i], '{}, {:.3f}'.format(obj, score),
(x1, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(255, 255, 0), 1)
return imgs[i]
# Box
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
# Video capture
cap = cv2.VideoCapture(video_src)
while True:
ret, frame = cap.read()
if not ret:
break
# frame preprocessing
ori_imgs, framed_imgs, framed_metas = preprocess_video(frame, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
# model predict
with torch.no_grad():
features, regression, classification, anchors = model(x)
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
# result
out = invert_affine(framed_metas, out)
img_show = display(out, ori_imgs)
# show frame by frame
cv2.imshow('frame',img_show)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/yasuo_hao/Yet-Another-EfficientDet-Pytorch.git
git@gitee.com:yasuo_hao/Yet-Another-EfficientDet-Pytorch.git
yasuo_hao
Yet-Another-EfficientDet-Pytorch
Yet-Another-EfficientDet-Pytorch
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385