代码拉取完成,页面将自动刷新
# Core Author: Zylo117
# Script's Author: winter2897
"""
Simple Inference Script of EfficientDet-Pytorch for detecting objects on webcam
"""
import time
import torch
import cv2
import numpy as np
from torch.backends import cudnn
from backbone import EfficientDetBackbone
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, preprocess_video
# Video's path
video_src = 'videotest.mp4' # set int to use webcam, set str to read from a video file
compound_coef = 0
force_input_size = None # set None to use default size
threshold = 0.2
iou_threshold = 0.2
use_cuda = True
use_float16 = False
cudnn.fastest = True
cudnn.benchmark = True
obj_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', '', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', '', 'backpack', 'umbrella', '', '', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', '', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', '', 'dining table', '', '', 'toilet', '', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', '', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush']
# tf bilinear interpolation is different from any other's, just make do
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
input_size = input_sizes[compound_coef] if force_input_size is None else force_input_size
# load model
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list))
model.load_state_dict(torch.load(f'weights/efficientdet-d{compound_coef}.pth'))
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
# function for display
def display(preds, imgs):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
return imgs[i]
for j in range(len(preds[i]['rois'])):
(x1, y1, x2, y2) = preds[i]['rois'][j].astype(np.int)
cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
cv2.putText(imgs[i], '{}, {:.3f}'.format(obj, score),
(x1, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(255, 255, 0), 1)
return imgs[i]
# Box
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
# Video capture
cap = cv2.VideoCapture(video_src)
while True:
ret, frame = cap.read()
if not ret:
break
# frame preprocessing
ori_imgs, framed_imgs, framed_metas = preprocess_video(frame, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
# model predict
with torch.no_grad():
features, regression, classification, anchors = model(x)
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
# result
out = invert_affine(framed_metas, out)
img_show = display(out, ori_imgs)
# show frame by frame
cv2.imshow('frame',img_show)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。