代码拉取完成,页面将自动刷新
#!/usr/bin/python3
import sys
import os
import os.path
import glob
from sys import exit as e
from os.path import join as pjn
import q
import math
import random
from collections import OrderedDict
import argparse
import tempfile
import time
from tqdm import tqdm
import skimage
import skimage.io
from PIL import Image
import numpy as np
import scipy.io
from sklearn.neighbors import NearestNeighbors
# skimage throws a lot of warnings like
# /usr/local/lib/python3.5/dist-packages/skimage/io/_io.py:141:
# UserWarning: fname.png is a low contrast image.
# Let's suppress them.
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
def parse_arguments():
"""
Creates an ArgumentParser() object, calls its method `.add_argument()`
a number of times, calls `.parse_args()` and returns the result.
"""
parser = argparse.ArgumentParser(
description='Density map generator for ShanghaiTech (part_A, part_B)')
parser.add_argument(
'--dataset-rootdir', metavar='D',
type=str,
default='./ShanghaiTech',
help="root dir for the dataset (default: './ShanghaiTech')")
parser.add_argument(
'--part', metavar='A_or_B',
type=str,
default='B',
help="'A' for part_A, 'B' for part_B (default: 'B')")
parser.add_argument(
'--knn', metavar='K',
type=int,
default=3,
help="number of nearest neigbors to "
"calculate distance to (default: 3)")
parser.add_argument(
'--max-knn-avg-dist', metavar='M',
type=float,
default=50.0,
help="average knn distance is set to M if exceeds it (default M: 50)")
parser.add_argument(
'--sigma-coef', metavar='COEF',
type=float,
default=0.3,
help="gaussian's sigma = COEF * knn_avg_dist (default COEF: 0.3)")
parser.add_argument(
'--sqr-side', metavar='S',
type=int,
default=40,
help="gaussian values set to 0.0 outside of [-S/2, +S/2] "
"(default S: 40)")
parser.add_argument(
'--xhp-dir', metavar='PATH',
type=str,
help="path to the dir containing density maps as *.mat files "
"(for part_A or part_B test set) from the repo "
"github.com/xhp-hust-2018-2011/S-DCNet")
args = parser.parse_args()
return args
def check_consist_imgs_annots(imgs_dir, annot_dir):
"""
Check the correspondence between the images and annotations.
`imgs_dir` must contain '*.jpg' files, `annot_dir` must contain
the same number of '*.mat' files, the basenames of the files must
differ only by the leading 'GT_' substring
(in the '*.mat' file basenames).
"""
assert os.path.isdir(imgs_dir), \
"images directory '%s' is not found" % imgs_dir
jpg_files = sorted(glob.glob(pjn(imgs_dir, "*.jpg")))
assert jpg_files, "directory '%s' contains no '*.jpg' files" % imgs_dir
jpg_basenames = [
os.path.splitext(os.path.split(f)[1])[0] for f in jpg_files]
assert os.path.isdir(annot_dir), \
"annotations directory '%s' is not found" % annot_dir
mat_files = sorted(glob.glob(pjn(annot_dir, "*.mat")))
assert mat_files, "directory '%s' contains no '*.mat' files" % annot_dir
mat_basenames = [
os.path.splitext(os.path.split(f)[1])[0] for f in mat_files]
assert len(jpg_basenames) == len(mat_basenames), \
"different number of image files and annotation files"
corresp_basenames = [
(bn_mat == "GT_" + bn_jpg)
for bn_jpg, bn_mat in zip(jpg_basenames, mat_basenames)
]
assert all(corresp_basenames), \
"image and ground truth file basenames are not consistent"
def get_headpoints_dict(annot_dir):
"""
Load the '*.mat' files from the annotation directory
and convert their contents (coordinates of the head points)
to the {basename: numpy ndarray} dictionary (OrderedDict()).
"""
mat_files = sorted(glob.glob(pjn(annot_dir, "*.mat")))
mat_basenames = [
os.path.splitext(os.path.split(f)[1])[0] for f in mat_files]
basename2headpoints_dict = OrderedDict()
for f, bn in zip(mat_files, mat_basenames):
mat = scipy.io.loadmat(f)
numpy_void_obj = mat['image_info'][0][0][0][0]
headpoints = numpy_void_obj[0]
num_headpoints = numpy_void_obj[1][0][0]
assert headpoints.shape[0] == num_headpoints, \
"number of headpoints entries != specified " \
"total number of headpoints"
assert headpoints.shape[1] == 2, \
"<2 or >2 coordinate values for one headpoint entry"
basename2headpoints_dict[bn] = headpoints
return basename2headpoints_dict
def get_one_head_gaussian(side_len, r, sigma):
"""
Pre-calculate the values of the Gaussian function in the
specified spatial square region (in the points with integer
coordinates).
Args:
side_len: side of the square inside which the Gaussian values
should be calculated.
r: the Gaussian is cenetered in the point (r, r).
sigma: the Gaussian RMS width.
Returns:
Two-dimensional array containing the Gaussian function values.
"""
one_head_gaussian = np.zeros((side_len + 2, side_len + 2))
for i in range(side_len + 1):
for j in range(side_len + 1):
t = -(i - r + 1)**2 - (j - r + 1)**2
t /= 2 * sigma**2
one_head_gaussian[i, j] = math.exp(t) / (sigma**2 * 2*math.pi)
return one_head_gaussian
def generate_density_maps(basename2headpoints_dict, imgs_dir, args_dict):
"""
Generate the density maps. They are the sums of normalized Gaussian
functions centered at the people's head points.
Implementation details: for each headpoint, a Gaussian 2d array is
constructed. It is clipped to the image boundaries if needed.
The remaining part of the array is normalized such that the values
corresponding to one head sum to 1. Density map is the sum of all
(normalized) Gaussians for all heads. Total sum of the density map
values is equal to the number of annotated heads.
The Gaussian RMS width is adaptive. Consider one head point.
`args_dict['knn']` (3 by default) nearest neighbors for that point
are found and average distance to them is calculated. That average
distance is capped by the constant pre-defined value
`args_dict['max_knn_avg_dist']` (50.0 by default) for ShanghaiTech
part_B dataset (the average distance is not capped for ShanghaiTech
part_A). The `sigma` (Gaussian RMS width) is the product of the average
distance and a pre-defined constant `args_dict['sigma_coef']`
(0.3 by default).
The sum of the density map values across the whole image area must be
equal to the number of annotated heads.
Args:
basename2headpoints_dict: Dictionary containing the mapping between
basenames and 2d headpoints numpy ndarrays
(returned by get_headpoints_dict()).
imgs_dir: Directory containing images (only their width and hight
values are needed).
args_dict: Dictionary containing required configuration values.
The keys required for this function are 'part', 'sqr_side', 'knn',
'max_knn_avg_dist', 'sigma_coef'.
Returns:
basename2dmap_dict: Dictionary containing the mapping between the
basenames and density maps (each density map has the same height
and width as the corresponding image).
"""
side_len = args_dict['sqr_side']
r = 1 + side_len // 2
basename2dmap_dict = OrderedDict()
for bn, points in tqdm(basename2headpoints_dict.items()):
img_fpath = pjn(imgs_dir, bn[3:] + '.jpg')
# bn[3:] means skipping the initial 'GT_' from the basename
w, h = Image.open(img_fpath).size
## points.shape == (num_heads, 2)
# `points` contains pairs (coord_along_w, coord_along_h) as floats
neigh = NearestNeighbors(
n_neighbors=(1 + args_dict['knn']),
# each point^ is the closest one to itself
metric='euclidean',
n_jobs=-1
)
neigh.fit(points)
knn_dists, knn_inds = neigh.kneighbors(points)
dmap = np.zeros((h, w))
for j, w_h_pair in enumerate(points):
knn_dist_avg = knn_dists[j, 1:].mean()
# excluding the point itself^ (zero distance)
max_d = args_dict['max_knn_avg_dist']
if (knn_dist_avg > max_d) and (args_dict['part'] == 'B'):
knn_dist_avg = max_d
sigma = args_dict['sigma_coef'] * knn_dist_avg
one_head_gaussian = get_one_head_gaussian(side_len, r, sigma)
one_head_sum = np.sum(one_head_gaussian)
w_center = int(w_h_pair[0])
h_center = int(w_h_pair[1])
##
left = max(0, w_center - r)
right = min(w, w_center + r)
up = max(0, h_center - r)
down = min(h, h_center + r)
# ^ clip to the image boundaries
##
left_g = left - w_center + r
right_g = right - w_center + r
up_g = up - h_center + r
down_g = down - h_center + r
# ^ one_head_gaussian must also be clipped to the image boundaries
# after placing the gaussian center to the required location
##
one_head_gaus_subset = one_head_gaussian[up_g:down_g,
left_g:right_g]
dmap[up:down, left:right] += \
one_head_gaus_subset / np.sum(one_head_gaussian)
# seems that xhp uses division by np.sum(one_head_gaussian) ^ here
# instead of np.sum(one_head_gaus_subset)!
basename2dmap_dict[bn] = dmap
#print(np.sum(dmap), points.shape[0])
integral_eq_annot_num = (int(round(np.sum(dmap))) == points.shape[0])
#assert integral_eq_annot_num
# ^ Integral (sum) over the density map must be equal
# to the annotated number of people
# if dmap is normalized by np.sum(one_head_gaus_subset).
# It will not hold if dmap is normalized by np.sum(one_head_gaussian).
return basename2dmap_dict
def xhp_density_maps(xhp_dir):
"""
Extract the density maps provided in the official reposity
https://github.com/xhp-hust-2018-2011/S-DCNet
Args:
xhp_dir: Directory containing '*.mat' files.
Returns:
bname2dmap_dict: Dictionary containing the mapping between the
basenames and density maps from the official repository.
"""
if not xhp_dir:
print("--xhp-dir was not specified at the command line")
return
if not os.path.isdir(xhp_dir):
print("directory '%s' not found" % xhp_dir)
return
xhp_mat_files = sorted(glob.glob(pjn(xhp_dir, "*.mat")))
assert xhp_mat_files, "directory '%s' contains no '*.mat' files" % xhp_dir
xhp_mat_bnames = [
os.path.splitext(os.path.split(f)[1])[0] for f in xhp_mat_files]
bname2dmap_dict = OrderedDict()
for fpath, bn in zip(xhp_mat_files, xhp_mat_bnames):
mat = scipy.io.loadmat(fpath)
bname2dmap_dict[bn] = mat['density_map']
return bname2dmap_dict
def compare_to_xhp_dmaps(my_dmaps_dict, xhp_dmaps_dict, args_dict):
"""
Compare the density maps obtained by generate_density_maps() with the
density maps from the official repository.
Save both sets of density maps as greyscale png images.
Args:
my_dmaps_dict: basenames <-> density maps mapping obtained by
the calling generate_density_maps().
xhp_dmaps_dict: basenames <-> density maps mapping from the official
repository.
args_dict: Dictionary containing required configuration values.
The key required for this function is 'part'.
Returns:
None.
"""
if not xhp_dmaps_dict:
return
a = all([k1 == 'GT_' + k2
for k1, k2 in zip(my_dmaps_dict.keys(), xhp_dmaps_dict.keys())])
assert a, "image and ground truth file basenames are not consistent"
abs_path = tempfile.mkdtemp(
suffix=None,
prefix='cmp_dmaps_part_%s_test_' % args_dict['part'],
dir=os.getcwd())
for dm1, (k2, dm2) in zip(my_dmaps_dict.values(), xhp_dmaps_dict.items()):
skimage.io.imsave(
pjn(abs_path, "%s_my.png" % k2),
(dm1 / np.max(dm1) * 255).astype(np.uint8))
skimage.io.imsave(
pjn(abs_path, "%s_xhp.png" % k2),
(dm2 / np.max(dm2) * 255).astype(np.uint8))
if __name__ == "__main__":
args = parse_arguments()
args_dict = vars(args)
for t in ['train_data', 'test_data']:
the_dir = pjn(
args_dict['dataset_rootdir'],
"part_" + args_dict['part'],
t
)
imgs_dir = pjn(the_dir, "images")
annot_dir = pjn(the_dir, "ground-truth")
check_consist_imgs_annots(imgs_dir, annot_dir)
bn2points_dict = get_headpoints_dict(annot_dir)
print("generate_density_maps() call for part_%s %s"
% (args_dict['part'], t[:-5]),
flush=True)
dmaps_dict = generate_density_maps(
bn2points_dict,
imgs_dir,
args_dict)
npz_name = "density_maps_part_%s_%s.npz" % (args_dict['part'], t[:-5])
np.savez(npz_name, **dmaps_dict)
if t == 'test_data':
xhp_dmaps_dict = xhp_density_maps(args_dict['xhp_dir'])
compare_to_xhp_dmaps(dmaps_dict, xhp_dmaps_dict, args_dict)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。