代码拉取完成,页面将自动刷新
import sys
import os
import os.path
from sys import exit as e
from os.path import join as pjn
import copy
import glob
import pickle
import math
import random
from collections import OrderedDict
import numpy as np
import skimage
import skimage.io
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime
from tqdm import tqdm
import q
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from labels_counts_utils import apply_count2label
# plt.ion()
# ^ interactive mode
def calc_rgb_mean_train(args_dict):
"""
Calculate the mean pixel value for each color channel
for all images in the train set.
The mean values for ShanghaiTech are typically in range
90--115 (approximately).
Args:
args_dict: Dictionary containing required configuration values.
The keys required for this method are 'dataset_rootdir'
and 'part'.
Returns:
ndarray of shape (3,) containing the per-channel mean pixel values.
"""
common_dir = pjn(
args_dict['dataset_rootdir'],
'part_%s' % args_dict['part'],
'train_data',
)
imgs_dir = pjn(common_dir, 'images')
assert os.path.isdir(imgs_dir)
jpg_files = sorted(glob.glob(pjn(imgs_dir, "*.jpg")))
rgb_sum_vals = np.zeros((3,))
num_pixels = 0.0
for img_fpath in jpg_files:
img_pil = Image.open(img_fpath)
img_np = np.array(img_pil)
h, w = img_np.shape[0:2]
assert (w, h) == img_pil.size
rgb_sum_vals += np.sum(img_np, axis=(0, 1))
num_pixels += h * w
return rgb_sum_vals / num_pixels
class ShanghaiTechDataset(Dataset):
"""
The class implementing the pytorch's Dataset API.
"""
def __init__(self, args_dict, subdir, shuffle_seed=None, rel_inds=(0.0, 1.0), transform=None):
"""
Initialization of the ShanghaiTechDataset class instance.
Args:
args_dict: Dictionary containing required configuration values.
The keys required for this method are 'dataset_rootdir',
'part', 'densmaps_gt_npz', 'train_val_split'.
subdir: The subdirectory of the dir 'ShanghaiTech/part_B'
or 'ShanghaiTech/part_B' where the groundtruth data is stored.
`subdir` must be 'train_data' or 'test_data'.
shuffle_seed: The seed for a random generator that will shuffle
the samples in the dataset. Creating two instances of
ShanghaiTechDataset() with the same value of `shuffle_seed`
for the same `subdir` will yield the same permutation of
the samples. If `shuffle_seed` is None, no shuffling
is performed.
rel_inds: Relative indices for the images to be included in the
dataset. If there are N images in the `subdir`, images
(after an optional shuffling) with indices in
range(int(rel_inds[0] * N), int(rel_inds[1] * N)) will be
included in the dataset. By default rel_inds=(0.0, 1.0)
(the whole dataset is included).
transform: Transformations to apply to the samples
(object of class torchvision.transforms, for example).
Returns:
None.
"""
self.transform = transform
assert subdir in ('train_data', 'test_data')
common_dir = pjn(
args_dict['dataset_rootdir'],
'part_%s' % args_dict['part'],
subdir)
self.imgs_dir = pjn(common_dir, 'images')
npz_files = sorted(glob.glob(args_dict['densmaps_gt_npz']))
train_or_test_suffixes = \
[os.path.splitext(os.path.split(f)[1])[0].split('_')[-1].lower()
for f in npz_files]
assert train_or_test_suffixes == ['test', 'train']
npz_file = npz_files[1 if subdir == 'train_data' else 0]
print(" '%s' is taken as the density maps ground truth file "
"for %s subdirectory" % (npz_file, subdir), flush=True)
dmaps_dict = np.load(npz_file)
tot_num_samples = len(dmaps_dict)
i_init = int(rel_inds[0] * tot_num_samples)
i_fin = int(rel_inds[1] * tot_num_samples)
print(" Images with indices in range(%d, %d) will be "
"selected (total num. images %d)"
% (i_init, i_fin, tot_num_samples), flush=True)
annot_bnames = sorted(
list(dmaps_dict.keys()),
key=lambda nm: int(nm[7:])
)
if shuffle_seed:
random.Random(shuffle_seed).shuffle(annot_bnames)
annot_bnames_selected = annot_bnames[i_init:i_fin]
self.img_bname_list = []
self.img_np_list = []
self.dmap_list = []
for annot_bname in tqdm(annot_bnames_selected):
self.img_bname_list.append(annot_bname[3:])
#
dmap = dmaps_dict[annot_bname]
self.dmap_list.append(dmap.astype(np.float32))
#
img_fpath = pjn(self.imgs_dir, annot_bname[3:] + '.jpg')
img_np = np.array(skimage.io.imread(img_fpath))
h, w = img_np.shape[:2]
assert (h, w) == dmap.shape
assert img_np.ndim == 2 or img_np.shape[2] == 3
if img_np.ndim == 2:
# monochrome image, only one channel; expand to 3 channels
img_np = np.repeat(np.expand_dims(img_np, axis=2), 3, axis=2)
self.img_np_list.append(img_np)
def __len__(self):
"""
Returns number of samples in the dataset.
"""
return len(self.img_np_list)
def __getitem__(self, idx):
"""
Returns a sample as a dictionary containing image basename,
image itself (as a numpy ndarray) and the corresponding
density map. Applies transforms (if specified during
instance initialization) before returning.
"""
sample = {
'image_bname': self.img_bname_list[idx],
# ^ str like 'IMG_2'
# (batching: several strings are packed to a list)
'image': self.img_np_list[idx],
# ^ shape (h, w, 3) (for example (768, 1024, 3))
# values 0..255
# (batching: leading dimension 1 added)
'dmap': self.dmap_list[idx],
# ^ shape (h, w) (for example (768, 1024))
# (batching: leading dimension 1 added)
}
if self.transform:
sample = self.transform(sample)
return sample
class Normalize(object):
"""
Apply this transform first!
Subtracts per-channel mean pixel values from the image pixels
and divides the difference by 255.
"""
def __init__(self, rgb_mean_vals):
self.rgb_mean_vals = rgb_mean_vals
def __call__(self, sample):
normd_image = (sample['image'] - self.rgb_mean_vals) / 255
return {
'image_bname': sample['image_bname'],
'image': normd_image.astype(np.float32),
# ^ normalized values in a range like [-0.5; +0.5]
# shape (h, w, 3)
'dmap': sample['dmap'],
}
class ToCHW(object):
"""
Apply this transform second, right after Normalize()!
Move the color channels axis to the 1st position because the order is
HWC after loading an image to numpy ndarray, but CHW for pytorch.
"""
def __call__(self, sample):
return {
'image_bname': sample['image_bname'],
'image': sample['image'].transpose((2, 0, 1)),
# ^ shape (3, h, w)
'dmap': sample['dmap'],
# ^ shape (h, w)
}
# see torchvision/transforms/transforms.py, class RandomHorizontalFlip
class RandomHorizontalFlip(object):
"""Horizontally flip the given torch tensor randomly with a given probability.
Must be applied after ToCHW() because CHW order is assumed here.
The dimension corresponding to width is passed to np.flip().
Without .copy(), the result would have negative stride. It is not supported.
"""
def __init__(self, p=0.5):
"""
Args:
p (float): probability of the image being flipped. Default: 0.5
"""
self.p = p
def __call__(self, sample):
if random.random() < self.p:
return {
'image_bname': sample['image_bname'],
'image': np.flip(sample['image'], 2).copy(),
# 2 (the 2nd arg to np.flip()) is the width dimension here ^
'dmap': np.flip(sample['dmap'], 1).copy(),
# 1 (the 2nd arg to np.flip()) is the width dimension here ^
}
return sample
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class QuasiRandomCrop(object):
"""
Augmentation used in CSRNet (https://arxiv.org/abs/1802.10062).
9 sub-images of 1/4 resolution are cropped from the original image.
The first 4 sub-images are from four corners,
and the remaining 5 are randomly cropped.
"""
def __call__(self, sample):
h, w = sample['image'].shape[1], sample['image'].shape[2]
assert (h, w) == sample['dmap'].shape
h_half, w_half = int(h/2), int(w/2)
r = random.random()
if r <= 1/9:
h1, h2 = 0, h_half
w1, w2 = 0, w_half
bname_add = "_upper_left_crop"
elif 1/9 < r <= 2/9:
h1, h2 = 0, h_half
w1, w2 = w_half, w
bname_add = "_upper_right_crop"
elif 2/9 < r <= 3/9:
h1, h2 = h_half, h
w1, w2 = 0, w_half
bname_add = "_lower_left_crop"
elif 3/9 < r <= 4/9:
h1, h2 = h_half, h
w1, w2 = w_half, w
bname_add = "_lower_right_crop"
else:
h1 = int(random.random() * h_half)
h2 = h1 + h_half
w1 = int(random.random() * w_half)
w2 = w1 + w_half
bname_add = "_random_crop"
return {
'image_bname': sample['image_bname'] + bname_add,
'image': sample['image'][:, h1:h2, w1:w2],
# ^ shape (3, h_half, w_half)
'dmap': sample['dmap'][h1:h2, w1:w2],
# ^ shape (h_half, w_half)
}
class PadToMultipleOf64(object):
"""
Pad the image (and the density map) to a size of (64*k, 64*n)
where k and n are integers.
"""
def __call__(self, sample):
h, w = sample['image'].shape[1], sample['image'].shape[2]
h_pd = math.ceil(h / 64) * 64
h_pd_diff = h_pd - h
w_pd = math.ceil(w / 64) * 64
w_pd_diff = w_pd - w
pad_pairs = (
(h_pd_diff // 2, h_pd_diff - h_pd_diff // 2),
# ^ (above the upper edge, below the lower edge)
(w_pd_diff // 2, w_pd_diff - w_pd_diff // 2),
# ^ (to the left side of the left edge, to the right of the right)
)
image_pd = np.pad(
sample['image'],
pad_width=((0, 0), pad_pairs[0], pad_pairs[1]),
mode='constant',
constant_values=0)
dmap_pd = np.pad(
sample['dmap'],
pad_width=(pad_pairs[0], pad_pairs[1]),
mode='constant',
constant_values=0.0)
return {
'image_bname': sample['image_bname'],
'image': image_pd,
# ^ shape (3, h_pd, w_pd)
'dmap': dmap_pd,
# ^ shape (h_pd, w_pd)
}
class AddGtCountsLabels(object):
"""
Calculate `labels_gt` and `div2_gt`
and add the values to the sample dict.
"""
def __init__(self, interval_bounds):
self.interval_bounds = interval_bounds
def __call__(self, sample):
"""
Perform calculations for the density map.
Tensors (`labels_gt`) containing class labels for patches of sizes
64x64, 32x32 and 16x16 are retrieved based on the ground truth
count values (`counts_gt`) for the corresponding patches.
Also, the ground truth count values (`div2_gt`) for the smallest patches
(16x16) are kept separately.
Two new key-value pairs (corresponding to `counts_gt` and `div2_gt`)
are added to the `sample`'s dictionary.
The ground truth count values are obtained by applying a conv2d
operation with trivial kernels 64x64, 32x32 and 16x16 that
contain ones.
"""
inp = torch.from_numpy(sample['dmap'].astype(np.float32))
inp.unsqueeze_(0).unsqueeze_(0)
counts_gt = []
for patch_size in [64, 32, 16]:
p = patch_size
kernel = torch.ones((1, 1, p, p))
conv_out = F.conv2d(input=inp, weight=kernel, stride=p)
counts_gt.append(conv_out.squeeze_(0).squeeze_(0))
labels_gt = [
apply_count2label(count_gt, self.interval_bounds)
for count_gt in counts_gt]
div2_gt = counts_gt[-1]
return {
'image_bname': sample['image_bname'],
'image': sample['image'],
'dmap': sample['dmap'],
'labels_gt': labels_gt,
'div2_gt': div2_gt,
}
class NoModifications(object):
"""
Identity transform of a sample.
Does nothing. Was used for debugging.
"""
def __call__(self, sample):
print("\tNoModifications() called!", flush=True)
for attr in ['image', 'dmap', 'div2_gt']:
print("sample['%s']:" % attr, type(sample[attr]),
sample[attr].dtype, sample[attr].shape)
for ndarr in sample['labels_gt']:
print(" one of sample['labels_gt']:",
type(ndarr), ndarr.dtype, ndarr.shape)
return sample
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。