登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
Gitee AI
NEW
我知道了
查看详情
登录
注册
12月28日,「开源中国源创会年终盛典·珠海站」全天线上直播同步,点击观看~
代码拉取完成,页面将自动刷新
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
1
Star
0
Fork
9
yankaics
/
MMLSpark
forked from
Gitee 极速下载
/
MMLSpark
确定同步?
同步操作将从
Gitee 极速下载/MMLSpark
强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
删除在远程仓库中不存在的分支和标签
同步 Wiki
(当前仓库的 wiki 将会被覆盖!)
取消
确定
代码
统计
流水线
服务
Gitee Pages
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
我知道了,不再自动展开
标签
标签名
描述
提交信息
操作
v0.9
v0.9 New functionality: * Refactor `ImageReader` and `BinaryFileReader` to support streaming images, including a Python API. Also improved performance of the readers. Check the 302 notebook for usage example. * Add `ClassBalancer` estimator for improving classification performance on highly imbalanced datasets. * Create an infrastructure for automated fuzzing, serialization, and python wrapper tests. * Added a `DropColumns` pipeline stage. New notebooks: * 305: A Flowers sample notebook demonstrating deep transfer learning with `ImageFeaturizer`. Updates: * Our main build is now based on Spark 2.2. Improvements: * Enable streaming through the `EnsembleByKey` transformer. * ImageReader, HDFS issue, etc.
c1a08f1
2017-10-13 06:19
下载
v0.8.9
v0.8.9 Same as v0.9, but using an older Conda installation with Python 3.5.2.
87c6a33
2017-08-31 02:22
下载
v0.8
v0.8 New functionality: * We are now uploading MMLSpark as a "Azure/mmlspark" spark package. Use `--packages Azure:mmlspark:0.8` with the Spark command-line tools. * Add a bi-directional LSTM medical entity extractor to the `ModelDownloader`, and new jupyter notebook for medical entity extraction using NLTK, PubMed Word embeddings, and the Bi-LSTM. * Add `ImageSetAugmenter` for easy dataset augmentation within image processing pipelines. Improvements: * Optimize the performance of `CNTKModel`. It now broadcasts a loaded model to workers and shares model weights between partitions on the same worker. Minibatch padding (an internal workaround of a CNTK bug) is now no longer used, eliminating excess computations when there is a mismatch between the partition size and minibatch size. * Bugfix: CNTKModel can work with models with unnamed outputs. Docker image improvements: * Environment variables are now part of the docker image (in addition to being set in bash). * New docker images: - `microsoft/mmlspark:latest`: plain image, as always, - `microsoft/mmlspark:gpu`: GPU variant based on an `nvidia/cuda` image. - `microsoft/mmlspark:plus` and `microsoft/mmlspark:plus-gpu`: these images contain additional packages for internal use; they will probably be based on an older Conda version too in future releases. Updates: * The Conda environment now includes NLTK. * Updated Java and SBT versions.
b61bf51
2017-09-02 10:30
下载
v0.7.91
v0.7.91 Same as v0.8, but using an older Conda installation with Python 3.5.2.
48d65f9
2017-08-31 02:22
下载
v0.7.9
v0.7.9 Same as v0.8, but using an older Conda installation with Python 3.5.2.
8b3f6fe
2017-08-31 02:22
下载
v0.7.1
v0.7.1 Same as v0.7, but using an older Conda installation.
06dae08
2017-08-31 05:46
下载
v0.7
v0.7 New functionality: * New transforms: `EnsembleByKey`, `Cacher` `Timer`; see the documentation. Updates: * Miniconda version 4.3.21, including Python 3.6. * CNTK version 2.1, using Maven Central. * Use OpenCV from the OpenPnP project from Maven Central. Improvements: * Spark's `binaryFiles` function had a regression in version 2.1 from version 2.0 which would lead to performance issues; work around that for now. Data frame operations after a use of `BinaryFileReader` (eg, reading images) are significantly faster with this. * The Spark installation is now patched with `hadoop-azure` and `azure-storage`. * Includes additional bug fixes and improvements.
5ea6488
2017-08-17 15:24
下载
v0.6
v0.6 New functionality: * Similar to Spark's `StringIndexer`, we have a `ValueIndexer` that can be used for indexing any type of values instead of only strings. Not only can it index these values, we also provide a reverse mapping via `IndexToValue`, similar to Spark's `IndexToString` transform. * A new "clean missing" data estimator, example: val cmd = new CleanMissingData() .setInputCols(Array("some-column")) .setOutputCols(Array("some-column")) .setCleaningMode(CleanMissingData.customOpt) .setCustomValue(someCustomValue) val cmdModel = cmd.fit(dataset) val result = cmdModel.transform(dataset) * New default featurization for date and timestamp spark types and our internal image type. For featurization of date columns, convert column to double features: year, day of week, month, day of month. For featurization of timestamp columns, same as date and in addition: hour of day, minute of hour, second of minute. For featurization of image columns, use image data converted to double with width and height info. * Starting the docker image without an `ACCEPT_EULA` variable setting would throw an error. Instead, we now start a tiny web server that shows the EULA and replaces itself with the Jupyter interface when you click the `AGREE` button. Breaking changes: * Renamed `ImageTransform` to `ImageTransformer`. Notable bug fixes and other changes: * Improved sample notebooks, and a new one: "303 - Transfer Learning by DNN Featurization - Airplane or Automobile". * Fix serialization bugs in generated python `PipelineStage`s. Acknowledgments Thanks to Ali Zaidi for some notebook beautifications.
bb6a495
2017-07-11 01:46
下载
v0.5
v0.5 Initial release.
70be8dd
2017-06-02 23:57
下载
下载
请输入验证码,防止盗链导致资源被占用
取消
下载
Scala
1
https://gitee.com/yankaics/MMLSpark.git
git@gitee.com:yankaics/MMLSpark.git
yankaics
MMLSpark
MMLSpark
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册