代码拉取完成,页面将自动刷新
同步操作将从 薛定谔的毛/News_Spark 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
1.创建hbase表
create 'weblogs','info'
2.配置flume文件
node2中:
a2.sources = r1
a2.sinks = k1
a2.channels = c1
a2.sources.r1.type = exec
a2.sources.r1.command = tail -F /opt/data/weblog-flume.log
a2.sources.r1.channels = c1
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 1000
a2.channels.c1.keep-alive = 5
a2.sinks.k1.type = avro
a2.sinks.k1.channel = c1
a2.sinks.k1.hostname = node1
a2.sinks.k1.port = 5555
#######################################################################
node3中:
a3.sources = r1
a3.sinks = k1
a3.channels = c1
a3.sources.r1.type = exec
a3.sources.r1.command = tail -F /opt/data/weblog-flume.log
a3.sources.r1.channels = c1
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 1000
a3.channels.c1.keep-alive = 5
a3.sinks.k1.type = avro
a3.sinks.k1.channel = c1
a3.sinks.k1.hostname = node1
a3.sinks.k1.port = 5555
########################################################################
node1中:
a1.sources = r1
a1.channels = kafkaC hbaseC
a1.sinks = kafkaSink hbaseSink
a1.sources.r1.type = avro
a1.sources.r1.channels = hbaseC kafkaC
a1.sources.r1.bind = node1
a1.sources.r1.port = 5555
a1.sources.r1.threads = 5
#****************************flume + hbase******************************
a1.channels.hbaseC.type = memory
a1.channels.hbaseC.capacity = 10000
a1.channels.hbaseC.transactionCapacity = 10000
a1.channels.hbaseC.keep-alive = 20
a1.sinks.hbaseSink.type = asynchbase
a1.sinks.hbaseSink.table = weblogs
a1.sinks.hbaseSink.columnFamily = info
a1.sinks.hbaseSink.serializer = org.apache.flume.sink.hbase.KfkAsyncHbaseEventSerializer
a1.sinks.hbaseSink.channel = hbaseC
a1.sinks.hbaseSink.serializer.payloadColumn = datetime,userid,searchname,retorder,cliorder,cliurl
#****************************flume + kafka******************************
a1.channels.kafkaC.type = memory
a1.channels.kafkaC.capacity = 10000
a1.channels.kafkaC.transactionCapacity = 10000
a1.channels.kafkaC.keep-alive = 20
a1.sinks.kafkaSink.channel = kafkaC
a1.sinks.kafkaSink.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.kafkaSink.brokerList = node1:9092,node2:9092,node3:9092
a1.sinks.kafkaSink.topic = weblogs
a1.sinks.kafkaSink.zookeeperConnect = node1:2181,node2:2181,node3:2181
a1.sinks.kafkaSink.requiredAcks = 1
a1.sinks.kafkaSink.batchSize = 1
a1.sinks.kafkaSink.serializer.class = kafka.serializer.StringEncoder
3.日志数据格式处理
cat weblog.log |tr "\t" "," > weblog2.log // 将制表符改为逗号
cat word.txt | sed 's/[ ][ ]*/,/g' // 将多个空格换位逗号
4.自定义flume的hbase sink并打成jar包上传到flume/lib下
5.创建weblogs项目来采集数据,并打成jar包发布到服务器node2和node3(/opt/jars)
6.编写启动jar包weblogs程序的shell在node2和node3(/opt/shell)
touch weblog-shell.sh
------------------------------------------------------------------------------
#/bin/bash
echo "start log......"
java -jar /opt/jars/weblogs.jar /opt/data/weblog.log /opt/data/weblog-flume.log
-------------------------------------------------------------------------------
7.编写flume集群服务启动脚本(node1,node2,node3中flume目录下,下例在node2中,node3中a2改为a3)
#/bin/bash
echo "flume-2 start"
bin/flume-ng agent --conf conf -f conf/flume-conf.properties -n a2 -Dflume.root.logger=INFO.console
8.编写测试kafka消费的shell
vi kfk-test-consumer.sh
#/bin/bash
echo "kfk-kafka-consumer.sh start......"
bin/kafka-console-consumer.sh --zookeeper node1:2181,node2:2181,node3:2181 --from-beginning --topic weblogs
9.进行测试flume采集数据的全流程
1)启动hdfs、zookeeper、kafka、flume
2)启动weblog-shell.sh脚本
3)创建名为weblogs的topic
bin/kafka-topics.sh --create --zookeeper node1:2181,node2:2181,node3:2181 --topic weblogs --partitions 1 --replication-factor 3
4)启动node2、node3的脚本发送数据到node1
5)启动node1的脚本接收node2、node3的数据,发送到hbase和kafka
10.安装mysql
11.安装hive(启动hive前需先启动yarn,因为mapreduce需在yarn上运行)
1)启动:bin/hive
2)测试加载数据到hive:
load data local inpath '/opt/data/test.txt' into table test;
3)根据业务需求创建表结构
CREATE EXTERNAL TABLE weblogs(
id string,
datetime string,
userid string,
searchname string,
retorder string,
cliorder string,
cliurl string
)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES("hbase.columns.mapping"=
":key,info:datetime,info:userid,info:searchname,info:retorder,info:cliorder,info:cliurl")
TBLPROPERTIES("hbase.table.name"="weblogs");
12.Hive与Hbase集成
1)第一种方式,比较麻烦,将hbase下配置文件拷贝到hive/conf下
2)第二种方式
a)在hive-site.xml中配置
<property>
<name>hbase.zookeeper.quorum</name>
<value>node1,node2,node3</value>
</property>
b)将hbase的9个jar拷贝到hive/lib下(high-scale-lib-1.1.2.jar自己下载)
export HBASE_HOME=/opt/soft/hbase
export HIVE_LIB=/opt/soft/hive-1.2.1-bin
ln -s $HBASE_HOME/lib/hbase-server-1.1.3.jar $HIVE_LIB/lib/hbase-server-1.1.3.jar
ln -s $HBASE_HOME/lib/hbase-client-1.1.3.jar $HIVE_LIB/lib/hbase-client-1.1.3.jar
ln -s $HBASE_HOME/lib/hbase-protocol-1.1.3.jar $HIVE_LIB/lib/hbase-protocol-1.1.3.jar
ln -s $HBASE_HOME/lib/hbase-it-1.1.3.jar $HIVE_LIB/lib/hbase-it-1.1.3.jar
ln -s $HBASE_HOME/lib/htrace-core-3.1.0-incubating.jar $HIVE_LIB/lib/htrace-core-3.1.0-incubating.jar
ln -s $HBASE_HOME/lib/hbase-hadoop2-compat-1.1.3.jar $HIVE_LIB/lib/hbase-hadoop2-compat-1.1.3.jar
ln -s $HBASE_HOME/lib/hbase-hadoop-compat-1.1.3.jar $HIVE_LIB/lib/hbase-hadoop-compat-1.1.3.jar
ln -s $HBASE_HOME/lib/high-scale-lib-1.1.2.jar $HIVE_LIB/lib/high-scale-lib-1.1.2.jar
ln -s $HBASE_HOME/lib/hbase-common-1.1.3.jar $HIVE_LIB/lib/hbase-common-1.1.3.jar
13.Hue安装部署
1)下载
2)编译Hue
a)安装需要依赖的包(下面的包可能多了几个)
yum install ant asciidoc cyrus-sasl-devel cyrus-sasl-gssapi cyrus-sasl-plain gcc gcc-c++ krb5-devel libtidy libffi-devel libxml2-devel libxslt-devel make mysql mysql-devel openldap-devel python-devel sqlite-devel gmp-devel openssl-devel mysql-devel
b)hue文件中:make apps
3)配置(vi $HUE_HOME/desktop/conf/hue.ini)
secret_key=jFE93j;2[290-eiw.KEiwN2s3['d;/.q[eIW^y#e=+Iei*@Mn < qW5o
http_host=node3
http_port=8888
time_zone=Asia/Shanghai
4)设置desktop.db的权限
[root@node3 desktop]# chmod o+w desktop.db
5)启动服务
[root@node3 hue-4.0.0]# ./build/env/bin/supervisor
如果出现错误KeyError: "Couldn't get user id for user hue"
如下:adduser hue,并将desktop.db改为hue:hue下,不要在root下
chown -R hue:hue desktop.db
6)Hue与Hive集成(hue.ini)
fs_defaultfs=hdfs://node1:8020 // hdfs默认路径
webhdfs_url=http://node1:50070/webhdfs/v1
hadoop_conf_dir=/opt/soft/hadoop-2.6.4/etc/hadoop
hadoop_bin=/opt/soft/hadoop-2.6.4/bin
hadoop_hdfs_home=/opt/soft/hadoop-2.6.4
------------------------------------------------------------
// 在三台hadoop中的core-site.xml中添加内容:
<property>
<name>hadoop.proxyuser.hue.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hue.groups</name>
<value>*</value>
</property>
------------------------------------------------------------
启动hdfs:
start-dfs.sh
------------------------------------------------------------
访问url:
http://node3:8888/filebrowser/
7)Hue与Yarn集成(hue.ini)
resourcemanager_host=zxl2
resourcemanager_port=8032
resourcemanager_api_url=http://node1:8088
proxy_api_url=http://node1:8088
history_server_api_url=http://node1:19888
------------------------------------------------------------
启动yarn:
start-yarn.sh
8)Hue与Hive集成(Hue.ini)
hive_server_host=node3
hive_server_port=10000
hive_conf_dir=/opt/soft/hive-1.2.1-bin/conf
------------------------------------------------------------
启动hive
[root@node3 bin]# ./hive --service hiveserver2
9)Hue与Mysql集成(Hue.ini)
nice_name="My SQL DB" // 随意配置
name=metastore // 数据库名
engine=mysql
host=node3
port=3306
user=root
password=1234
注意:[[[mysql]]]前的##要删掉
10)Hue与Hbase集成(Hue.ini)
hbase_clusters=(Cluster|node1:9090) // 随意配置集群中某一台hbase
hbase_conf_dir=/opt/soft/hbase/conf
------------------------------------------------------------
启动hbase(thrift)
[root@node1 hbase]# bin/start-hbase.sh
[root@node1 hbase]# bin/hbase-daemon.sh start thrift // 启动一个就行
14.配置Spark集群模式,因为受内存的影响,配置为standlone模式
15.配置Spark SQL与Hive集成(此次在安装Hive的服务器里的spark配置)
1)将hive的配置文件hive-site.xml拷贝到spark conf目录,同时添加metastore的url配置
vi hive-site.xml
<property>
<name>hive.metastore.uris</name>
<value>thrift://node3:9083</value>
</property>
2)拷贝hive中的mysql jar包到spark的jar目录下
cp hive-1.2.1-bin/lib/mysql-connector-java-5.1.35-bin.jar spark-2.2.0/jars/
3)检查spark-env.sh 文件中的配置项
vi spark-env.sh
HADOOP_CONF_DIR=/opt/soft/hadoop-2.6.4/etc/hadoop
4)启动mysql
service mysqld start
5)启动hive metastore服务
bin/hive --service metastore
6)启动hive并测试下
bin/hive
show databases;
create database zxl;
use zxl;
create table if not exists test(userid string,username string)ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS textfile;
load data local inpath "/opt/data/test.txt" into table test;
more /opt/data/test.txt
0001 spark
0002 hive
0003 hbase
0004 hadoop
7)启动spark-shell
bin/spark-shell
spark.sql("select * from zxl.test").show
8)展示启动spark-sql
bin/spark-sql
show databases; #查看数据库
default
zxl
use zxl; #使用数据库
show tables; #查看表
test
select * from test; #查看表数据
9)Spark SQL之ThriftServer和beeline使用
a)启动ThriftServer
sbin/start-thriftserver.sh
b)启动beeline
bin/beeline !connect jdbc:hive2://node3:10000
show databases; #查看数据库
select * from kfk.test; #查看表数据
16.配置Spark SQL与MySQL集成(spark1为test数据库中的表)
启动spark-shell
bin/spark-shell
:paste #可以多行输入,包括注释,需顶格书写
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql://node3:3306/test")
.option("dbtable", "spark1")
.option("user", "root")
.option("password", 1234)
.load()
ctr+d #退出
#打印读取数据
jdbcDF.show
17.配置Spark SQL与Hbase集成
Spark SQL与HBase集成,其核心就是Spark Sql通过hive外部表来获取HBase的表数据。
1)拷贝HBase的包和hive包到spark 的jars目录下
hbase-client-1.1.3.jar
hbase-common-1.1.3.jar
hbase-protocol-1.1.3.jar
hbase-server-1.1.3.jar
hive-hbase-handler-1.2.1.jar
htrace-core-3.1.0-incubating.jar #incubating表示刚出现版本
mysql-connector-java-5.1.35-bin.jar
2)启动spark-shell
bin/spark-shell
val df =spark.sql("select count(1) from weblogs").show
18.安装nc作为外部数据源
yum -y install nc 或者 rpm安装(rpm -ivh nc-1.84-24.el6.x86_64.rpm)
19.简单运行nc与spark例子
[root@node2 ~]# nc -lk 9999
[root@node2 spark-2.2.0]# bin/run-example --master local[2] streaming.NetworkWordCount localhost 9999
注:记得设置master时,local[n],n的值一定要大于worker的个数
20.Spark Streaming结果数据保存到外部数据库(mysql)
// 一般与数据库建立连接时,使用foreachPartition来避免频繁创建数据库连接
Class.forName("com.mysql.jdbc.Driver")
val conn = DriverManager
.getConnection("jdbc:mysql://node3:3306/test","root","1234")
try{
for(row <- line){
val sql = "insert into webCount(titleName,count)values('"+row._1+"',"+row._2+")"
conn.prepareStatement(sql).executeUpdate()
}
}finally {
conn.close()
}
21.StructuredStreaming与kafka、mysql集成
添加spark一些jar,spark+kfk和spark+hbase
22.创建表webCount用来接收数据
CREATE TABLE `webCount` (
`titleName` varchar(255) DEFAULT NULL,
`count` int(11) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
23.简单流程测试:
1)启动zookeeper:zkServer.sh start
2)启动dfs:start-dfs.sh
3)启动hbase:start-hbase.sh
4)启动mysql;service mysqld start
5)node2(node3)启动flume:flume-kfk-start.sh
6)node1启动flume:flume-kfk-start.sh
7)启动kafka-0.10(最好三台都启动,不然易出错):
bin/kafka-server-start.sh config/server.properties > kafka.log 2>&1 &
8)启动node2(node3)中的脚本:weblog-shell.sh
9)启动应用程序
10)解决Structured Streaming向数据库写入乱码
1)修改数据库文件my.cnf(linux下)
vi my.cnf
-----------------------------------------------------------------------------
[client]
socket=/var/lib/mysql/mysql.sock //添加
default-character-set=utf8 //添加
[mysqld]
character-set-server=utf8 //添加
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
user=mysql
# Disabling symbolic-links is recommended to prevent assorted security risks
symbolic-links=0
[mysqld_safe]
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid
-----------------------------------------------------------------------------
2)建表时形如下:
CREATE TABLE `webCount` (
`titleName` varchar(255) CHARACTER SET utf8 DEFAULT NULL,
`count` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。