1 Star 0 Fork 16

高祥/dddd_trainer

forked from sml2h3/dddd_trainer 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

dddd_trainer 带带弟弟OCR训练工具

带带弟弟OCR所用的训练工具今天正式开源啦! ddddocr

项目仅支持N卡训练,A卡或其他卡就先别看啦

项目基于Pytorch进行开发,支持cnn与crnn进行训练、断点恢复、自动导出onnx模型,并同时支持无缝使用ddddocrocr_api_server 的无缝部署

训练环境支持

Windows/Linux

Macos仅支持cpu训练

1、深度学习必备环境配置(非仅本项目要求,而是所有深度学习项目要求,cpu训练除外)

开始本教程前请先前往pytorch 官网查看自己系统与硬件支持的pytorch版本,注意30系列之前的N卡,如2080Ti等请选择cuda11以下的版本(例:CUDA 10.2),如果为30系N卡,仅支持CUDA 11版本,请选择CUDA 11以上版本(例:CUDA 11.3),然后根据选择的条件显示的pytorch安装命令完成pytorch安装,由于pytorch的版本更新速度导致很多pypi源仅缓存了cpu版本,CUDA版本需要自己在官网安装。

安装CUDA和CUDNN

根据自己显卡型号与系统选择

cuda

cudnn

注意cudnn支持的cuda版本号要与你安装的cuda版本号对应,不同版本的cuda支持的显卡不一样,20系无脑选择10.2版本cuda,30系无脑选择11.3版本cuda,这里有啥问题就百度吧,算是一个基础问题。

2、训练部分

  • 以下所有变量均以 {param} 格式代替,表示可根据自己需要修改,而使用时并不需要带上{},如步骤创建新的训练项目,使用时可以直接写

python app.py create test_project

  • 1、Clone本项目到本地

git clone https://github.com/sml2h3/dddd_trainer.git

  • 2、进入项目目录并安装本项目所需依赖

pip install -r requirements.txt -i https://pypi.douban.com/simple

  • 3、创建新的训练项目

python app.py create {project_name}

如果想要创建一个CNN的项目,则可以加上--single参数,CNN项目识别比如图片类是什么分类的情况,比如图片上只有一个字,识别这张图是什么字(图上有多个字的不要用CNN模式),又比如分辨图片里是狮子还是兔子用CNN模式比较合适,大多数OCR需求请不要使用--single

python app.py create {project_name} --single

project_name 为项目名称,尽量不要以特殊符号命名

  • 4、准备数据

    项目支持两种形式的数据

    A、从文件名导入

    图片均在同一个文件夹中,且命名为类似,其中/root/images_set为图片所在目录,可以为任意目录地址

    /root/images_set/
    |---- abcde_随机hash值.jpg
    |---- sdae_随机hash值.jpg
    |---- 酱闷肘子_随机hash值.jpg
    
    

    如下图所示

    image

    那么图片命名可以是

    mkGu_000001d00f140741741ed9916240d8d5.jpg

    为考虑各种情况,dddd_trainer不会自动去处理大小写问题,如果想训练大小写,则在样本标注时就需要自己标注好大小写,如上面例子

    B、从文件中导入

    受限于可能样本组织形式或者特殊字符,本项目支持从txt文档中导入数据,数据集目录必须包含有labels.txt文件和images文件夹, 其中/root/images_set为图片所在目录,可以为任意目录地址

    labels.txt文件中包含了所有在/root/images_set/images目录下基于/root/images_set/images的图片相对路径,/root/images_set/images下可以有目录。

    当然,在这种模式下,图片的文件名随意,可以有具体label也可以没有,因为咱们不从这里获取图片的label

    如下所示

  • a.images下无目录的形式

    /root/images_set/
    |---- labels.txt
    |---- images
          |---- 随机hash值.jpg
          |---- 随机hash值.jpg
          |---- 酱闷肘子_随机hash值.jpg
    
    labels.txt文件内容为(其中\t制表符为每行文件名与label的分隔符)
    随机hash值.jpg\tabcd
    随机hash值.jpg\tsdae
    酱闷肘子_随机hash值.jpg\t酱闷肘子
    

    b.images下有目录的形式

    /root/images_set/
    |---- labels.txt
    |---- images
          |---- aaaa
                |---- 随机hash值.jpg
          |---- 酱闷肘子_随机hash值.jpg
    
    labels.txt文件内容为(其中\t制表符为每行文件名与label的分隔符)
    aaaa/随机hash值.jpg\tabcd
    aaaa/随机hash值.jpg\tsdae
    酱闷肘子_随机hash值.jpg\t酱闷肘子
    
    

    为了新手更好的理解本部分的内容,本项目也提供了两套基础数据集提供测试

    数据集一 数据集二

  • 5、修改配置文件

Model:
    CharSet: []     # 字符集,不要动,会自动生成
    ImageChannel: 1 # 图片通道数,如果你想以灰度图进行训练,则设置为1,彩图,则设置为3。如果设置为1,数据集是彩图,项目会在训练的过程中自动在内存中将读取到的彩图转为灰度图,并不需要提前自己修改并且该设置不会修改本地图片
    ImageHeight: 64 # 图片自动缩放后的高度,单位为px,高度必须为16的倍数,会自动缩放图像
    ImageWidth: -1  # 图片自动缩放后的宽度,单位为px,本项若设置为-1,将自动根据情况调整
    Word: false     # 是否为CNN模型,这里在创建项目的时候通过参数控制,不要自己修改
System:
    Allow_Ext: [jpg, jpeg, png, bmp]  # 支持的图片后缀,不满足的图片将会被自动忽略
    GPU: true                         # 是否启用GPU去训练,使用GPU训练需要参考步骤一安装好环境
    GPU_ID: 0                         # GPU设备号,0为第一张显卡
    Path: ''                          # 数据集根目录,在缓存图片步骤会自动生成,不需要自己改,除非数据集地址改了
    Project: test                     # 项目名称 也就是{project_name}
    Val: 0.03                         # 验证集的数据量比例,0.03就是3%,在缓存数据时,会自动选则3%的图片用作训练过程中的数据验证,修改本值之后需要重新缓存数据
Train:
    BATCH_SIZE: 32                                    # 训练时每一个batch_size的大小,主要取决于你的显存或内存大小,可以根据自己的情况,多测试,一般为16的倍数,如16,32,64,128
    CNN: {NAME: ddddocr}                              # 特征提取的模型,目前支持的值为ddddocr,effnetv2_l,effnetv2_m,effnetv2_xl,effnetv2_s,mobilenetv2,mobilenetv3_s,mobilenetv3_l
    DROPOUT: 0.3                                      # 非专业人员不要动
    LR: 0.01                                          # 初始学习率
    OPTIMIZER: SGD                                    # 优化器,不要动
    SAVE_CHECKPOINTS_STEP: 2000                       # 每多少step保存一次模型
    TARGET: {Accuracy: 0.97, Cost: 0.05, Epoch: 20}   # 训练结束的目标,同时满足时自动结束训练并保存onnx模型,Accuracy为需要满足的最小准确率,Cost为需要满足的最小损失,Epoch为需要满足的最小训练轮数
    TEST_BATCH_SIZE: 32                               # 测试时每一个batch_size的大小,主要取决于你的显存或内存大小,可以根据自己的情况,多测试,一般为16的倍数,如16,32,64,128
    TEST_STEP: 1000                                   # 每多少step进行一次测试


配置文件位于本项目根目录下projects/{project_name}/config.yaml

  • 6、缓存数据

python app.py cache {project_name} /root/images_set/

如果是从labels.txt里面读取数据

python app.py cache {project_name} /root/images_set/ file

  • 7、开始训练或恢复训练

python app.py train {project_name}

  • 8、部署

你们先训练着,我去适配ddddocr和ocr_api_server了,适配完我再继续更新文档

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

ddddocr训练工具 展开 收起
Python
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ximi-gao/dddd_trainer.git
git@gitee.com:ximi-gao/dddd_trainer.git
ximi-gao
dddd_trainer
dddd_trainer
main

搜索帮助