1 Star 2 Fork 0

李艳鹏/Draw-MaYiSenior

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
ImgDraw.py 10.88 KB
一键复制 编辑 原始数据 按行查看 历史
李艳鹏 提交于 2020-10-22 22:42 . first commit
# -*- coding: utf-8 -*-
# @Time : 2020/10/17 13:16
# @Author : XiaYouRan
# @Email : youran.xia@foxmail.com
# @File : ImgDraw.py
# @Software: PyCharm
import turtle
import cv2
import numpy as np
from bs4 import BeautifulSoup
import os
import re
class LineMethod(object):
def __init__(self, width, height):
# 贝塞尔函数的取样次数
self.samples = 15
self.width = width
self.height = height
def Bezier(self, p1, p2, t):
# 一阶贝塞尔函数
return p1 * (1 - t) + p2 * t
def Bezier2(self, x1, y1, x2, y2, x3, y3):
# 二阶贝塞尔函数
turtle.goto(x1, y1)
turtle.pendown()
for t in range(0, self.samples + 1):
x = self.Bezier(self.Bezier(x1, x2, t / self.samples),
self.Bezier(x2, x3, t / self.samples), t / self.samples)
y = self.Bezier(self.Bezier(y1, y2, t / self.samples),
self.Bezier(y2, y3, t / self.samples), t / self.samples)
turtle.goto(x, y)
turtle.penup()
def Bezier3(self, x1, y1, x2, y2, x3, y3, x4, y4):
# 三阶贝塞尔函数
x1 = - self.width / 2 + x1
y1 = self.height / 2 - y1
x2 = - self.width / 2 + x2
y2 = self.height / 2 - y2
x3 = - self.width / 2 + x3
y3 = self.height / 2 - y3
x4 = - self.width / 2 + x4
y4 = self.height / 2 - y4 # 坐标变换
turtle.goto(x1, y1)
turtle.pendown()
for t in range(0, self.samples + 1):
x = self.Bezier(
self.Bezier(self.Bezier(x1, x2, t / self.samples), self.Bezier(x2, x3, t / self.samples),
t / self.samples),
self.Bezier(self.Bezier(x2, x3, t / self.samples), self.Bezier(x3, x4, t / self.samples),
t / self.samples),
t / self.samples)
y = self.Bezier(
self.Bezier(self.Bezier(y1, y2, t / self.samples), self.Bezier(y2, y3, t / self.samples),
t / self.samples),
self.Bezier(self.Bezier(y2, y3, t / self.samples), self.Bezier(y3, y4, t / self.samples),
t / self.samples),
t / self.samples)
turtle.goto(x, y)
turtle.penup()
def Moveto(self, x, y):
# 绝对移动
turtle.penup()
turtle.goto(- self.width / 2 + x, self.height / 2 - y)
turtle.pendown()
def MovetoRelative(self, dx, dy):
# 相对移动
turtle.penup()
turtle.goto(turtle.xcor() + dx, turtle.ycor() - dy)
turtle.pendown()
def Line(self, x1, y1, x2, y2):
# 连接svg坐标下两点
turtle.penup()
turtle.goto(- self.width / 2 + x1, self.height / 2 - y1)
turtle.pendown()
turtle.goto(- self.width / 2 + x2, self.height / 2 - y2)
turtle.penup()
def Lineto(self, x, y):
# 连接当前点和svg坐标下(x, y)
turtle.pendown()
turtle.goto(- self.width / 2 + x, self.height / 2 - y)
turtle.penup()
def LinetoRelative(self, dx, dy):
# 连接当前点和相对坐标(dx, dy)的点
turtle.pendown()
turtle.goto(turtle.xcor() + dx, turtle.ycor() - dy)
turtle.penup()
def Curveto(self, x1, y1, x2, y2, x, y):
# 三阶贝塞尔曲线到(x, y)
turtle.penup()
X_now = turtle.xcor() + self.width / 2
Y_now = self.height / 2 - turtle.ycor()
self.Bezier3(X_now, Y_now, x1, y1, x2, y2, x, y)
def CurvetoRelative(self, x1, y1, x2, y2, x, y):
# 三阶贝塞尔曲线到相对坐标(x, y)
turtle.penup()
X_now = turtle.xcor() + self.width / 2
Y_now = self.height / 2 - turtle.ycor()
self.Bezier3(X_now, Y_now, X_now + x1, Y_now + y1, X_now + x2, Y_now + y2, X_now + x, Y_now + y)
class DrawImg(object):
def __init__(self, filename, rgb):
self.initWH(filename)
self.rgb = rgb
def initWH(self, filename):
with open(filename) as f:
self.svg_html = BeautifulSoup(f.read(), 'lxml')
self.width = float(self.svg_html.svg.attrs['width'][0: -2])
self.height = float(self.svg_html.svg.attrs['height'][0: -2])
self.transform = self.svg_html.g.attrs['transform']
self.line_obj = LineMethod(width=self.width, height=self.height)
pattern = re.compile('[\w()., ]*\(([\d.]*),-([\d.]*)\)')
self.scale_value = re.match(pattern, self.transform)
self.scale = (float(self.scale_value.group(1)), float(self.scale_value.group(2)))
def readPathAttrD(self, path_d):
"""
返回一个迭代器,随时获取数据
:param path_d:
:return:
"""
path_dlist = path_d.split(' ')
for i in path_dlist:
if i.isdigit():
yield float(i)
elif i[0].isalpha():
yield i[0]
yield float(i[1:])
elif i[-1].isalpha():
yield float(i[: -1])
elif i[0] == '-':
yield float(i)
def drawImg(self, path_diter):
"""
大写字母绝对定位, 小写字母相对定位
M Move to (x, y), 移动到(x, y)
L Line to (x, y), 在当前位置(x, y)与上一个位置点画线段
H Horizontal lineto, 绘制平行线
V Vertical lineto, 绘制垂直线
C Curveto, 三次贝塞尔曲线(x1, y1, x2, y2, x, y)
S Smooth curveto 光滑三次贝塞尔曲线, 用来创建与之前曲线一样的贝塞尔曲线(x2, y2, x, y)
Q Quadratic Bezier curve, 二次贝塞尔曲线(x1, y1, x, y)
T Smooth quadratic Bezier curveto, 光滑二次贝塞尔曲线(x, y)
A Elliptical Arc, 弧形()
Z Closepath, 从当前点画一条直线到起点
:param path_diter:
:return:
"""
lastI = ''
for i in path_diter:
if i == 'M':
turtle.end_fill()
self.line_obj.Moveto(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
turtle.begin_fill()
elif i == 'm':
turtle.end_fill()
self.line_obj.MovetoRelative(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
turtle.begin_fill()
elif i == 'C':
self.line_obj.Curveto(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
lastI = i
elif i == 'c':
self.line_obj.CurvetoRelative(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
lastI = i
elif i == 'L':
self.line_obj.Lineto(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
elif i == 'l':
self.line_obj.LinetoRelative(next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
lastI = i
elif lastI == 'C':
self.line_obj.Curveto(i * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
elif lastI == 'c':
self.line_obj.CurvetoRelative(i * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1],
next(path_diter) * self.scale[0], next(path_diter) * self.scale[1])
elif lastI == 'L':
self.line_obj.Lineto(i * self.scale[0], next(path_diter) * self.scale[1])
elif lastI == 'l':
self.line_obj.LinetoRelative(i * self.scale[0], next(path_diter) * self.scale[1])
def start(self):
# turtle.screensize(640, 480)
turtle.setup(width=self.width, height=self.height)
# 坐标轴对调, 否则画出来是反的
turtle.setworldcoordinates(- self.width / 2, self.height / 2,
self.width / 2, - self.height / 2)
# # 每隔n次, 更新一下屏幕, 可以用来加速绘画速度
turtle.tracer(100)
# turtle.pensize(1)
# turtle.speed(10)
turtle.penup()
turtle.color(self.rgb)
for i in self.svg_html.find_all('path'):
path_d = i.attrs['d'].replace('\n', ' ')
path_diter = self.readPathAttrD(path_d)
self.drawImg(path_diter)
turtle.penup()
# # 隐藏小乌龟
# turtle.hideturtle()
# turtle.update()
if __name__ == '__main__':
# (B, G, R)
img1 = cv2.imread('mayi_50.png')
# img1 = cv2.imread('mayi_75.png')
img2 = np.float32(img1.reshape((-1, 3)))
# data:np.float32类型的数据,每个特征应该放在一列
# K:聚类的最终数目
# bestLabels:预设的分类标签,没有的话就设置为None
# criteria:终止迭代的条件,当条件满足时算法的迭代就终止,它应该是一个含有三个成员的元组(type,max_iter,epsilon)
# attempts:重复试验kmeans算法次数,将会返回最好的一次结果
# flags:初始类中心选择,有两个选择:cv2.KMEANS_PP_CENTERS 和 cv2.KMEANS_RANDOM_CENTERS
# compactness:紧密度,返回每个点到相应聚类中心距离的平方和, 一个值float
# labels:标志数组
# centers:有聚类中心组成的数组
compactness, labels, centers = cv2.kmeans(data=img2, K=32, bestLabels=None, criteria=(cv2.TERM_CRITERIA_EPS, 10, 1.0),
attempts=16, flags=cv2.KMEANS_RANDOM_CENTERS)
centers = centers.astype(np.uint8)
res = centers[labels.flatten()]
res = res.reshape(img1.shape)
count = 0
for i in centers:
# src: 原图
# lowerb: 低于这个值变为0
# upperb: 高于这个值变为0
res2 = cv2.inRange(src=res, lowerb=i, upperb=i)
# 将图片里像素值按位反向
res2 = cv2.bitwise_not(res2)
cv2.imwrite('test_{}.bmp'.format(count), res2)
# 位图转为矢量图bmp-->svg
os.system('Potrace.exe test_{}.bmp -s --flat'.format(count))
# print('drawing %d' % count)
# print(i)
draw_obj = DrawImg('test_{}.svg'.format(count), rgb='#%02x%02x%02x' % (i[2], i[1], i[0]))
draw_obj.start()
# count += 1
print('OK!')
turtle.mainloop()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/xiayouran/Draw-MaYiSenior.git
git@gitee.com:xiayouran/Draw-MaYiSenior.git
xiayouran
Draw-MaYiSenior
Draw-MaYiSenior
main

搜索帮助

0d507c66 1850385 C8b1a773 1850385