代码拉取完成,页面将自动刷新
同步操作将从 yolo/Detection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
import pandas as pd
import pylab as plt
import time # 引入time模块
from matplotlib.ticker import MultipleLocator
ticks1 = time.time()
#显示所有列
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#设置value的显示长度为100,默认为50
pd.set_option('max_colwidth',100)
fig = plt.figure(1,(10,8),dpi = 400)
path = r'D:\workspace\data\csv\sepdata.csv'
df = pd.read_csv(path)
lon = df["longitude"]
lat = df["latitude"]
# 121.967-122.05 30.2057-30.2664
x_low = 121.967
x_high = 122.05
y_low = 30.2057
y_high = 30.2644
scales = 50
x_size = round((x_high-x_low)/scales,8)
y_size = round((y_high-y_low)/scales,8)
print(x_size)
print(y_size)
#计算指定区域的中心经度和纬度,并返回该区域内的轨迹数据
def interest_area_range(df,x_low,x_high,y_low,y_high):
cond=(df['longitude'] >= x_low) & (df['longitude'] <= x_high)
df=df[cond]
cond=(df['latitude'] >= y_low) & (df['latitude'] <= y_high)
df=df[cond]
center_lon=(x_low+x_high)/2
center_lat=(y_low+y_high)/2
return df,center_lon,center_lat
df,center_lon,center_lat = interest_area_range(df,x_low,x_high,y_low,y_high)
#计算经度刻度数组
#输入参数:查询区域经度上界、查询区域中心经度、网格经度方向尺寸
def lon_scale_func(x_high,center_lon,size):
lon_scale_list=[center_lon]
lon_scale=center_lon
i=1
while lon_scale < x_high:
lon_scale+=size#中心刻度高侧刻度
less_lon_scale=lon_scale-2*i*size#中心刻度低侧刻度
lon_scale_list.append(lon_scale)
lon_scale_list.append(less_lon_scale)
i+=1
lon_scale_list.sort()
grid_lon_scale=np.array(lon_scale_list)
del lon_scale_list[0]
lon_scale_array=np.array(lon_scale_list)
return grid_lon_scale,lon_scale_array
grid_lon_scale,lon_scale_array = lon_scale_func(x_high,center_lon,x_size)
#lon_scale_array 是经度网格尺度数组
#计算纬度刻度数组
#输入参数:查询区域纬度上界、查询区域中心纬度、网格纬度方向尺寸
#注意这里size可以与网格经度方向的size相同,也可以不同
def lat_scale_func(y_high,center_lat,size):
lat_scale_list=[center_lat]
lat_scale=center_lat
i=1
while lat_scale < y_high:
lat_scale+=size#中心刻度高侧刻度
less_lat_scale=lat_scale-2*i*size#中心刻度低侧刻度
lat_scale_list.append(lat_scale)
lat_scale_list.append(less_lat_scale)
i+=1
lat_scale_list.sort(reverse=True)
grid_lat_scale=np.array(lat_scale_list)
del lat_scale_list[0]
lat_scale_array=np.array(lat_scale_list)
return grid_lat_scale,lat_scale_array
grid_lat_scale,lat_scale_array = lat_scale_func(y_high,center_lat,y_size)
#为每个网格编号,即生成网格坐标与序号对应的字典
def index_for_grid(lon_scale_array,lat_scale_array):
grid_num=int(len(lat_scale_array)*len(lon_scale_array))
grid_index_list=list(range(grid_num))
grid_tuple_list=[]
for h in range(len(lat_scale_array)):
for v in range(len(lon_scale_array)):
grid_tuple_list.append((h,v))
grid_dict=dict(zip(grid_tuple_list,grid_index_list))
dict_grid=dict(zip(grid_index_list,grid_tuple_list))
return grid_dict,dict_grid #生成网格字典,网格行列坐标对网格序号
#生成字典网格:网格序号对网格行列坐标
grid_dict,dict_grid=index_for_grid(lon_scale_array,lat_scale_array)
print(dict_grid)
# 计算网格中心坐标数组
def grid_center_loc(lon_scale_array, lat_scale_array, grid_locarray):
grid_center_loc_array = np.zeros((len(lat_scale_array), len(lon_scale_array), 2))
grid_tuple = []
grid_center_tuple = []
for i in range(len(lat_scale_array)):
for j in range(len(lon_scale_array)):
low_lon = grid_locarray[i, j][0]
high_lon = grid_locarray[i, j][1]
low_lat = grid_locarray[i, j][2]
high_lat = grid_locarray[i, j][3]
center_lon = (low_lon + high_lon) / 2
center_lat = (low_lat + high_lat) / 2
grid_center_loc_array[i, j, 0] = center_lon
grid_center_loc_array[i, j, 1] = center_lat
grid_tuple.append((i, j))
grid_center_tuple.append((center_lon, center_lat))
center_tuple_dict = dict(zip(grid_center_tuple, grid_tuple))
return grid_center_loc_array, center_tuple_dict # 生成三维的网格中心坐标数组
# 生成网格中心坐标元祖对网格行列元组的字典
ax = fig.gca()
ax.set_xticks(lon_scale_array)
ax.set_yticks(lat_scale_array)
plt.xticks(rotation=15)
plt.yticks(rotation=15)
plt.xlim(xmin=grid_lon_scale[0],xmax=grid_lon_scale[-1])
plt.ylim(ymin=grid_lat_scale[-1],ymax=grid_lat_scale[0])
plt.scatter(lon,lat,s=0.1)
plt.grid(linewidth=1,color="black")
plt.show()
def getcenter_list(dict_grid,grid_lon_scale,grid_lat_scale):
centerlist = []
for i in range(len(dict_grid)):
grid_row = dict_grid[i][0]
grid_colum = dict_grid[i][1]
count = 0
grid_lon_low = round(grid_lon_scale[grid_colum], 8)
grid_lon_high = round(grid_lon_scale[grid_colum + 1], 8)
grid_lat_low = round(grid_lat_scale[grid_row + 1], 8)
grid_lat_high = round(grid_lat_scale[grid_row], 8)
grid_center_lon = round((grid_lon_low+grid_lon_high)/2, 8)
grid_center_lat = round((grid_lat_low+grid_lat_high)/2, 8)
centerlist.append((grid_center_lon,grid_center_lat))
return centerlist
print(getcenter_list(dict_grid,grid_lon_scale,grid_lat_scale))
def getpointnums(dict_grid,grid_lon_scale,grid_lat_scale):
pointnums_list = []
for i in range(len(dict_grid)):
grid_row = dict_grid[i][0]
grid_colum = dict_grid[i][1]
count = 0
grid_lon_low = round(grid_lon_scale[grid_colum], 8)
grid_lon_high = round(grid_lon_scale[grid_colum + 1], 8)
grid_lat_low = round(grid_lat_scale[grid_row + 1], 8)
grid_lat_high = round(grid_lat_scale[grid_row], 8)
for row in df.itertuples():
lon = row.longitude
lat = row.latitude
if grid_lon_low <= lon <= grid_lon_high and grid_lat_low <= lat <= grid_lat_high:
count = count + 1
pointnums_list.append(count)
dict_grid_pointnums = dict(zip(dict_grid, pointnums_list))
return pointnums_list,dict_grid_pointnums
# pointnums_list,dict_grid_pointnums=getpointnums(dict_grid,grid_lon_scale,grid_lat_scale)
# print(pointnums_list)
colums = len(grid_lon_scale)-1-1
rows = len(grid_lat_scale)-1-1
print("行:",rows)
print("列:",colums)
ticks2 = time.time()
print("程序运行用时:",round(ticks2-ticks1,2),"s")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。