1 Star 0 Fork 1

小栈/Detection

forked from yolo/Detection 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
cross_num_of_grid.py 22.61 KB
一键复制 编辑 原始数据 按行查看 历史
yolo 提交于 2021-12-27 12:06 . 1
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 17 09:18:11 2019
@author: lenovo
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import DBSCAN
###############>>>>>>>>>>>>>>$$$$$$$$$$$$$$$$$$$<<<<<<<<<<<<<<<################
############>>>>>>>>>>>>>>Some critical parameters<<<<<<<<<<<<<<<##############
#计算指定区域的中心经度和纬度,并返回该区域内的轨迹数据
def interest_area_range(df,x_low,x_high,y_low,y_high):
cond=(df['lon'] >= x_low) & (df['lon'] <= x_high)
df=df[cond]
cond=(df['lat'] >= y_low) & (df['lat'] <= y_high)
df=df[cond]
center_lon=(x_low+x_high)/2
center_lat=(y_low+y_high)/2
return df,center_lon,center_lat
#计算经度刻度数组
#输入参数:查询区域经度上界、查询区域中心经度、网格经度方向尺寸
def lon_scale_func(x_high,center_lon,size):
lon_scale_list=[center_lon]
lon_scale=center_lon
i=1
while lon_scale < x_high:
lon_scale+=size#中心刻度高侧刻度
less_lon_scale=lon_scale-2*i*size#中心刻度低侧刻度
lon_scale_list.append(lon_scale)
lon_scale_list.append(less_lon_scale)
i+=1
lon_scale_list.sort()
grid_lon_scale=np.array(lon_scale_list)
del lon_scale_list[0]
lon_scale_array=np.array(lon_scale_list)
return grid_lon_scale,lon_scale_array
#计算纬度刻度数组
#输入参数:查询区域纬度上界、查询区域中心纬度、网格纬度方向尺寸
#注意这里size可以与网格经度方向的size相同,也可以不同
def lat_scale_func(y_high,center_lat,size):
lat_scale_list=[center_lat]
lat_scale=center_lat
i=1
while lat_scale < y_high:
lat_scale+=size#中心刻度高侧刻度
less_lat_scale=lat_scale-2*i*size#中心刻度低侧刻度
lat_scale_list.append(lat_scale)
lat_scale_list.append(less_lat_scale)
i+=1
lat_scale_list.sort(reverse=True)
grid_lat_scale=np.array(lat_scale_list)
del lat_scale_list[0]
lat_scale_array=np.array(lat_scale_list)
return grid_lat_scale,lat_scale_array
#为每个网格编号,即生成网格坐标与序号对应的字典
def index_for_grid(lon_scale_array,lat_scale_array):
grid_num=int(len(lat_scale_array)*len(lon_scale_array))
grid_index_list=list(range(grid_num))
grid_tuple_list=[]
for h in range(len(lat_scale_array)):
for v in range(len(lon_scale_array)):
grid_tuple_list.append((h,v))
grid_dict=dict(zip(grid_tuple_list,grid_index_list))
dict_grid=dict(zip(grid_index_list,grid_tuple_list))
return grid_dict,dict_grid #生成网格字典,网格行列坐标对网格序号
#生成字典网格:网格序号对网格行列坐标
#判断两个点是否在同一网格内
def in_one_grid_or_not(pointA,pointB,lon_scale_array,lat_scale_array):
lon_pointA=pointA[0]
lat_pointA=pointA[1]
lon_pointB=pointB[0]
lat_pointB=pointB[1]
cond1=lon_scale_array >= lon_pointA
cond2=lon_scale_array >= lon_pointB
grid_lon_A=lon_scale_array[cond1][0]
grid_lon_B=lon_scale_array[cond2][0]
cond3=lat_scale_array <= lat_pointA
cond4=lat_scale_array <= lat_pointB
grid_lat_A=lat_scale_array[cond3][0]
grid_lat_B=lat_scale_array[cond4][0]
if (grid_lon_A == grid_lon_B) and (grid_lat_A == grid_lat_B):
return True
else:
return False
###############>>>>>>>>>>>>>>$$$$$$$$$$$$$$$$$$$<<<<<<<<<<<<<<<################
###############>>>>>>>>>>>>>>Cross One Dim Or Not<<<<<<<<<<<<<<<###############
#判断两个点是否只穿越一个维度:
def cross_one_dim_or_not(pointA,pointB,lon_scale_array,lat_scale_array):
lon_pointA=pointA[0]
lat_pointA=pointA[1]
lon_pointB=pointB[0]
lat_pointB=pointB[1]
cond1=lon_scale_array >= lon_pointA
cond2=lon_scale_array >= lon_pointB
grid_lon_A=lon_scale_array[cond1][0]
grid_lon_B=lon_scale_array[cond2][0]
cond3=lat_scale_array <= lat_pointA
cond4=lat_scale_array <= lat_pointB
grid_lat_A=lat_scale_array[cond3][0]
grid_lat_B=lat_scale_array[cond4][0]
#判断两个点是穿过lon还是穿过lat,
if grid_lon_A == grid_lon_B:
cross_one_dim=1#经度刻度一样,说明穿过lat
elif grid_lat_A == grid_lat_B:
cross_one_dim=2#纬度刻度一样说明穿过lon
else:
cross_one_dim=3#两个都不一样说明穿过网格数大于2
return cross_one_dim,grid_lon_A,grid_lat_A
###############>>>>>>>>>>>>>>$$$$$$$$$$$$$$$$$$$<<<<<<<<<<<<<<<################
###########>>>>>>>>>>>>>>Lon Lat Between Two Points<<<<<<<<<<<<<<<#############
#cross_one_dim=1的情况,经度相同计算跨越纬度
def lat_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array):
lon_pointA=pointA[0]
lat_pointA=pointA[1]
lon_pointB=pointB[0]
lat_pointB=pointB[1]
#计算这两个点跨过的纬度刻度数组
if lat_pointA <= lat_pointB:
cond_lat=(lat_scale_array >= lat_pointA) & (lat_scale_array <= lat_pointB)
else:
cond_lat=(lat_scale_array >= lat_pointB) & (lat_scale_array <= lat_pointA)
grid_lat_between=lat_scale_array[cond_lat]
#计算这两个点的经度刻度
return grid_lat_between
#cross_one_dim=2的情况,纬度相同计算跨越经度
def lon_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array):
lon_pointA=pointA[0]
lat_pointA=pointA[1]
lon_pointB=pointB[0]
lat_pointB=pointB[1]
#计算这两个点跨过的纬度刻度数组
if lon_pointA <= lon_pointB:
cond_lon=(lon_scale_array >= lon_pointA) & (lon_scale_array <= lon_pointB)
else:
cond_lon=(lon_scale_array >= lon_pointB) & (lon_scale_array <= lon_pointA)
grid_lon_between=lon_scale_array[cond_lon]
#计算这两个点的纬度刻度
return grid_lon_between
#cross_one_dim=3的情况,计算跨越的经度和纬度
def lon_lat_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array):
lon_pointA=pointA[0]
lat_pointA=pointA[1]
lon_pointB=pointB[0]
lat_pointB=pointB[1]
if (lon_pointA <= lon_pointB) and (lat_pointA <= lat_pointB):
cond_lon=(lon_scale_array >= lon_pointA) & (lon_scale_array <= lon_pointB)
cond_lat=(lat_scale_array >= lat_pointA) & (lat_scale_array <= lat_pointB)
if (lon_pointA >= lon_pointB) and (lat_pointA <= lat_pointB):
cond_lon=(lon_scale_array >= lon_pointB) & (lon_scale_array <= lon_pointA)
cond_lat=(lat_scale_array >= lat_pointA) & (lat_scale_array <= lat_pointB)
if (lon_pointA >= lon_pointB) and (lat_pointA >= lat_pointB):
cond_lon=(lon_scale_array >= lon_pointB) & (lon_scale_array <= lon_pointA)
cond_lat=(lat_scale_array >= lat_pointB) & (lat_scale_array <= lat_pointA)
if (lon_pointB >= lon_pointA) and (lat_pointA >= lat_pointB):
cond_lon=(lon_scale_array >= lon_pointA) & (lon_scale_array <= lon_pointB)
cond_lat=(lat_scale_array >= lat_pointB) & (lat_scale_array <= lat_pointA)
grid_lon_between=lon_scale_array[cond_lon]
grid_lat_between=lat_scale_array[cond_lat]
return grid_lon_between,grid_lat_between
###########>>>>>>>>>>>>>>$$$$$$$$$$$$$$$$$$$$$$$$$$<<<<<<<<<<<<<<<#############
#################>>>>>>>>>>>>>>Pass Grid List<<<<<<<<<<<<<<<###################
def linear_func(pointA,pointB):
#这里轨迹点A和点B是轨迹中的点,且在顺序上点A在点B上
x1=pointA[0]
y1=pointA[1]
x2=pointB[0]
y2=pointB[1]
#假设点A和点B构成的直线不是垂直的,
k=(y2-y1)/(x2-x1)
b=y1-x1*k
return k,b
#计算只穿过lat的线段经过的网格坐标
def lat_pass_grid_list(grid_lon_A,grid_lat_between,lon_scale_array,lat_scale_array):
pass_grid_list=[]
cond=lon_scale_array == grid_lon_A
verindex=np.argwhere(lon_scale_array == lon_scale_array[cond][0])[0][0]
for j in range(len(grid_lat_between)):
lat_value=grid_lat_between[j]
#开始判断该lat交点在哪两个格子之间
horindex=np.argwhere(lat_scale_array == lat_value)[0][0]
grid1loc=(horindex,verindex)
grid2loc=(horindex+1,verindex)
pass_grid_list.append(grid1loc)
pass_grid_list.append(grid2loc)
pass_grid_list=list(set(pass_grid_list))
return pass_grid_list
#计算只穿过lon的线段经过的网格坐标
def lon_pass_grid_list(grid_lat_A,grid_lon_between,lon_scale_array,lat_scale_array):
pass_grid_list=[]
cond=lat_scale_array == grid_lat_A
horindex=np.argwhere(lat_scale_array == lat_scale_array[cond][0])[0][0]
for j in range(len(grid_lon_between)):
lon_value=grid_lon_between[j]
#开始判断该lon交点在哪两个格子之间
verindex=np.argwhere(lon_scale_array == lon_value)[0][0]
grid1loc=(horindex,verindex)
grid2loc=(horindex,verindex+1)
pass_grid_list.append(grid1loc)
pass_grid_list.append(grid2loc)
pass_grid_list=list(set(pass_grid_list))
return pass_grid_list
#计算又经过lon又经过lat的线段的网格坐标
def two_points_pass_grid_list(k,b,grid_lon_between,grid_lat_between,lon_scale_array,lat_scale_array):
lon_cross_grid_list=[]
for i in range(len(grid_lon_between)):
lon_value=grid_lon_between[i]#交点的lon值
lat_value=k*lon_value+b#交点的lat值
#开始判断该lon交点在哪两个格子之间
#寻找这个lon交点在哪条lon刻度上,该lon刻度索引是多少
verindex=np.argwhere(lon_scale_array == lon_value)[0][0]
#寻找该交点的lat刻度
cond=lat_scale_array <= lat_value
horindex=np.argwhere(lat_scale_array == lat_scale_array[cond][0])[0][0]
grid1loc=(horindex,verindex)
grid2loc=(horindex,verindex+1)
lon_cross_grid_list.append(grid1loc)
lon_cross_grid_list.append(grid2loc)
lat_cross_grid_list=[]
for j in range(len(grid_lat_between)):
lat_value=grid_lat_between[j]
lon_value=(lat_value-b)/k
#开始判断该lat交点在哪两个格子之间
#寻找这个lat交点在哪条lat刻度上,该lon刻度索引是多少
horindex=np.argwhere(lat_scale_array == lat_value)[0][0]
#寻找该交点的lat刻度
cond=lon_scale_array >= lon_value
verindex=np.argwhere(lon_scale_array == lon_scale_array[cond][0])[0][0]
grid1loc=(horindex,verindex)
grid2loc=(horindex+1,verindex)
lat_cross_grid_list.append(grid1loc)
lat_cross_grid_list.append(grid2loc)
pass_grid_list=list(set(lon_cross_grid_list) | set(lat_cross_grid_list))
return pass_grid_list
###########>>>>>>>>>>>>>>$$$$$$$$$$$$$$$$$$$$$$$$$$<<<<<<<<<<<<<<<#############
#穿越网格的起始点所在网格坐标
def pointA_grid(pointA,lon_scale_array,lat_scale_array):
lonA=pointA[0]
latA=pointA[1]
cond_lon=lon_scale_array >= lonA
lon_value=lon_scale_array[cond_lon][0]
verindex=np.argwhere(lon_scale_array == lon_value)[0][0]
cond_lat=lat_scale_array <= latA
lat_value=lat_scale_array[cond_lat][0]
horindex=np.argwhere(lat_scale_array == lat_value)[0][0]
pointA_loc=(horindex,verindex)
return pointA_loc
############################################################################
##########................轨迹的网格穿越数目主函数................############
############################################################################
#对子轨迹列表内的每段轨迹计算穿越网格热度
#输出数组形式的网格热度以及
#一个列表,该列表内包含许多小列表,每个小列表内包含一条子轨迹所经过的网格序号(该列表后来没有被使用,可以不看)
def cross_num_heat_array(subtraj_list,lon_scale_array,lat_scale_array,grid_dict):
#df可以为指定区域轨迹数据也可以是一艘船的全部轨迹数据
#SSL代表某段子轨迹的时间戳列表
#SSL_list就是储存了所有子轨迹时间戳列表的列表
heat_array=np.zeros((len(lat_scale_array),len(lon_scale_array)))
grid_sequence_all_subtraj=[]
for tra_df in subtraj_list:
pass_grid_of_subtraj=''
for i in range(len(tra_df)-1):
pointA=tra_df[['lon','lat']].values[i]
pointB=tra_df[['lon','lat']].values[i+1]
#判断相邻的两个点组成的线段是否在一个网格内
if in_one_grid_or_not(pointA,pointB,lon_scale_array,lat_scale_array):
continue
else:
#判断这个线段是只穿过纬度、只穿过经度、还是都穿过
cross_one_dim,grid_lon_A,grid_lat_A=cross_one_dim_or_not(pointA,pointB,lon_scale_array,lat_scale_array)
#通过穿过态势判断该线段的纬度刻度数组还是经度刻度数组
if cross_one_dim == 1:
grid_lat_between=lat_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array)
elif cross_one_dim == 2:
grid_lon_between=lon_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array)
else:
grid_lon_between,grid_lat_between=lon_lat_between_two_points(pointA,pointB,lon_scale_array,lat_scale_array)
#通过穿过态势和刻度数组
if cross_one_dim == 1:
pass_grid_list=lat_pass_grid_list(grid_lon_A,grid_lat_between,lon_scale_array,lat_scale_array)
elif cross_one_dim == 2:
pass_grid_list=lon_pass_grid_list(grid_lat_A,grid_lon_between,lon_scale_array,lat_scale_array)
else:
k,b=linear_func(pointA,pointB)
pass_grid_list=two_points_pass_grid_list(k,b,grid_lon_between,grid_lat_between,lon_scale_array,lat_scale_array)
#将网格坐标列表中的起始点所在的网格坐标去掉
pointA_tuple=pointA_grid(pointA,lon_scale_array,lat_scale_array)
#但是这种情况在经过顶点时会出错,对于经过顶点的情况直接跳过
if pointA_tuple in pass_grid_list:
pass_grid_list.remove(pointA_tuple)
for j in range(len(pass_grid_list)):
loc_tuple=pass_grid_list[j]
heat_array[loc_tuple[0],loc_tuple[1]]+=1
for grid_loc_tuple in pass_grid_list:
pass_grid_of_subtraj+=(str(grid_dict[grid_loc_tuple])+',')
pointA=tra_df[['lon','lat']].values[0]
pointA_tuple=pointA_grid(pointA,lon_scale_array,lat_scale_array)
if pass_grid_of_subtraj != '' :
pass_grid_of_subtraj=str(grid_dict[pointA_tuple])+','+pass_grid_of_subtraj
pass_grid_of_subtraj=pass_grid_of_subtraj[:-1]
else:
pass_grid_of_subtraj='A'+str(grid_dict[pointA_tuple])+','+pass_grid_of_subtraj
pass_grid_of_subtraj=pass_grid_of_subtraj[:-1]
grid_sequence_all_subtraj.append(pass_grid_of_subtraj)
return heat_array,grid_sequence_all_subtraj
#利用核密度估计绘制该区域网格穿越数目的空间分布
def grid_frequency(heat_array):
#生成n*2维的网格坐标数组,n是网格的总数,2是因为每个网格坐标是二维的
grid_pos_list=[]
for i in range(heat_array.shape[0]):
for j in range(heat_array.shape[1]):
grid_pos_list.append([i,j])
grid_pos_array=np.reshape(grid_pos_list,(heat_array.shape[0]*heat_array.shape[1],2))
#生成一个网格对应热度的列表
grid_heat_list=[]
for m in range(heat_array.shape[0]):
for n in range(heat_array.shape[1]):
grid_heat_list.append(heat_array[m,n])
#复制grid_pos_array中的网格坐标,使得坐标出现的次数对应其热度
grid_frequency_array=grid_pos_array.copy()
grid_frequency_array=grid_frequency_array.repeat(grid_heat_list,axis=0)
df = pd.DataFrame(grid_frequency_array, columns=["lat", "lon"])
df['lat']=heat_array.shape[0]-1-df['lat']
sns.jointplot(x="lon", y="lat", data=df, kind="kde")
plt.show()
#返回的就是包含每个网格坐标的n*2维数组
return grid_pos_array,grid_frequency_array
############################################################################
#############................区域重心坐标计算................################
############################################################################
#计算网格经纬度范围数组
def grid_lon_lat_func(grid_lon_scale,grid_lat_scale):
grid_loclist=[]
for i in range(len(grid_lat_scale)-1):
grid_loclist_yaxis=[]
y_value_high=grid_lat_scale[i]
y_value_low=grid_lat_scale[i+1]
for j in range(len(grid_lon_scale)-1):
x_value_low=grid_lon_scale[j]
x_value_high=grid_lon_scale[j+1]
grid_array=[x_value_low,x_value_high,y_value_low,y_value_high]
grid_loclist_yaxis.append(grid_array)
grid_loclist.append(grid_loclist_yaxis)
grid_locarray=np.reshape(grid_loclist,(len(grid_lat_scale)-1,len(grid_lon_scale)-1,4))
return grid_locarray #三维的网格四角坐标数组
#计算网格中心坐标数组
def grid_center_loc(lon_scale_array,lat_scale_array,grid_locarray):
grid_center_loc_array=np.zeros((len(lat_scale_array),len(lon_scale_array),2))
grid_tuple=[]
grid_center_tuple=[]
for i in range(len(lat_scale_array)):
for j in range(len(lon_scale_array)):
low_lon=grid_locarray[i,j][0]
high_lon=grid_locarray[i,j][1]
low_lat=grid_locarray[i,j][2]
high_lat=grid_locarray[i,j][3]
center_lon=(low_lon+high_lon)/2
center_lat=(low_lat+high_lat)/2
grid_center_loc_array[i,j,0]=center_lon
grid_center_loc_array[i,j,1]=center_lat
grid_tuple.append((i,j))
grid_center_tuple.append((center_lon,center_lat))
center_tuple_dict=dict(zip(grid_center_tuple,grid_tuple))
return grid_center_loc_array,center_tuple_dict #生成三维的网格中心坐标数组
#生成网格中心坐标元祖对网格行列元组的字典
'''
#生成每个子轨迹中所有点对应的网格序号列表
def grid_index_for_subpoints(subtraj_df_list,lon_scale_array,lat_scale_array,grid_dict):
alist=[]
for subtraj in subtraj_df_list:
blist=[]
for i in range(len(subtraj)):
pointA=subtraj[['lon','lat']].values[i]
pointA_tuple=pointA_grid(pointA,lon_scale_array,lat_scale_array)
blist.append(grid_dict[pointA_tuple])
alist.append(blist)
return alist #生成一个列表,列表中有很多小列表,小列表中含有一条子轨迹所有点所在的网格的行列元组
'''
def grid_index_for_subpoints(subtraj_df_list,lon_scale_array,lat_scale_array):
alist=[]
for subtraj in subtraj_df_list:
blist=[]
for i in range(len(subtraj)):
pointA=subtraj[['lon','lat']].values[i]
pointA_tuple=pointA_grid(pointA,lon_scale_array,lat_scale_array)
blist.append(pointA_tuple)
alist.append(blist)
return alist #生成一个列表,列表中有很多小列表,小列表中含有一条子轨迹所有点所在的网格的行列元组
#生成由几个网格构成的区域所包含的子轨迹序号列表
#SPGIL:subtraj_point_grid_index_list
def subtraj_index_in_area(grid_index_list,alist,ratio_threshold):
subtraj_index_list=[]
for i in range(len(alist)):
SPGIL=alist[i]
cover_point_num=0
for grid_index in SPGIL:
if grid_index in grid_index_list:
cover_point_num+=1
cover_rate=cover_point_num/len(SPGIL)
if cover_rate >= ratio_threshold:
subtraj_index_list.append(i)
return subtraj_index_list
#根据一个子轨迹集合subtraj_list及网格中心坐标数组和半径参数,生成每个网格的平均速度
def speed_grid_func(subtraj_list,grid_center_loc_array,radium):
all_point=pd.concat(subtraj_list)
a=grid_center_loc_array.shape[0]
b=grid_center_loc_array.shape[1]
speed_heat_array=np.zeros((a,b))
speed_list=[]
for i in range(grid_center_loc_array.shape[0]):
for j in range(grid_center_loc_array.shape[1]):
grid_center_loc=grid_center_loc_array[i,j]
low_lon=grid_center_loc[0]-radium
high_lon=grid_center_loc[0]+radium
low_lat=grid_center_loc[1]-radium
high_lat=grid_center_loc[1]+radium
cond1=(all_point['lon'] >= low_lon) & (all_point['lon'] <= high_lon)
cond2=(all_point['lat'] >= low_lat) & (all_point['lat'] <= high_lat)
neighbour_point=all_point[cond1 & cond2]
if len(neighbour_point) == 0:
speed_heat_array[i,j]=-1
speed_list.append(-1)
else:
c=0
d=0
for k in range(len(neighbour_point)):
point_loc=neighbour_point[['lon','lat']].iloc[k].values
point_dist=np.linalg.norm(point_loc-grid_center_loc)
point_speed=neighbour_point['sog'].iloc[k]
c+=(point_dist**(-2))*point_speed
d+=point_dist**(-2)
grid_speed=c/d*3.6/1.852
speed_heat_array[i,j]=grid_speed
speed_list.append(grid_speed)
index_speed_dict=dict(zip(range(grid_center_loc_array.shape[0]*grid_center_loc_array.shape[1]),speed_list))
return speed_heat_array,index_speed_dict
#根据一个网格中心坐标数组进行聚类
#pgcla:partion_grid_center_location_array,部分网格中心坐标数组
def grid_cluster(pgcla,eps,min_samples,center_tuple_dict):
dbscan = DBSCAN(eps, min_samples)
dbscan.fit(pgcla)
label_pred = dbscan.labels_
area_class_array=np.unique(label_pred)
print(area_class_array)
all_area_grid_tuple_list=[]
colorstyle=['orange','blue','red','black','green','yellow']*10
for i in range(len(area_class_array)):
area_class=area_class_array[i]
area_loc_center_array=pgcla[label_pred==area_class] #########
plt.scatter(area_loc_center_array[:, 0], area_loc_center_array[:, 1],c=colorstyle[i])
area_grid_tuple_list=[]
for j in range(len(area_loc_center_array)):
area_loc_center_tuple=(area_loc_center_array[j,0],area_loc_center_array[j,1])
grid_tuple=center_tuple_dict[area_loc_center_tuple]#找到该网格中心坐标元祖对应的行列元祖
area_grid_tuple_list.append(grid_tuple)
all_area_grid_tuple_list.append(area_grid_tuple_list)
plt.show()
return label_pred,all_area_grid_tuple_list
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/xiaozhan/Detection.git
git@gitee.com:xiaozhan/Detection.git
xiaozhan
Detection
Detection
master

搜索帮助