1 Star 0 Fork 0

小风/MobileNet-Caffe

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
mobilenet_v2_deploy.prototxt 50.34 KB
一键复制 编辑 原始数据 按行查看 历史
shicai 提交于 2018-02-07 19:04 . utf8 fix
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417
name: "MOBILENET_V2"
# transform_param {
# scale: 0.017
# mirror: false
# crop_size: 224
# mean_value: [103.94,116.78,123.68]
# }
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1/bn"
top: "conv1/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1/bn"
top: "conv1/bn"
}
layer {
name: "conv2_1/expand"
type: "Convolution"
bottom: "conv1/bn"
top: "conv2_1/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/expand/bn"
type: "BatchNorm"
bottom: "conv2_1/expand"
top: "conv2_1/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_1/expand/scale"
type: "Scale"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu2_1/expand"
type: "ReLU"
bottom: "conv2_1/expand/bn"
top: "conv2_1/expand/bn"
}
layer {
name: "conv2_1/dwise"
type: "Convolution"
bottom: "conv2_1/expand/bn"
top: "conv2_1/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_1/dwise/bn"
type: "BatchNorm"
bottom: "conv2_1/dwise"
top: "conv2_1/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_1/dwise/scale"
type: "Scale"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu2_1/dwise"
type: "ReLU"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/dwise/bn"
}
layer {
name: "conv2_1/linear"
type: "Convolution"
bottom: "conv2_1/dwise/bn"
top: "conv2_1/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 16
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_1/linear/bn"
type: "BatchNorm"
bottom: "conv2_1/linear"
top: "conv2_1/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_1/linear/scale"
type: "Scale"
bottom: "conv2_1/linear/bn"
top: "conv2_1/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv2_2/expand"
type: "Convolution"
bottom: "conv2_1/linear/bn"
top: "conv2_2/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 96
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/expand/bn"
type: "BatchNorm"
bottom: "conv2_2/expand"
top: "conv2_2/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_2/expand/scale"
type: "Scale"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu2_2/expand"
type: "ReLU"
bottom: "conv2_2/expand/bn"
top: "conv2_2/expand/bn"
}
layer {
name: "conv2_2/dwise"
type: "Convolution"
bottom: "conv2_2/expand/bn"
top: "conv2_2/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 96
bias_term: false
pad: 1
kernel_size: 3
group: 96
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv2_2/dwise/bn"
type: "BatchNorm"
bottom: "conv2_2/dwise"
top: "conv2_2/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_2/dwise/scale"
type: "Scale"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu2_2/dwise"
type: "ReLU"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/dwise/bn"
}
layer {
name: "conv2_2/linear"
type: "Convolution"
bottom: "conv2_2/dwise/bn"
top: "conv2_2/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 24
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2_2/linear/bn"
type: "BatchNorm"
bottom: "conv2_2/linear"
top: "conv2_2/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv2_2/linear/scale"
type: "Scale"
bottom: "conv2_2/linear/bn"
top: "conv2_2/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv3_1/expand"
type: "Convolution"
bottom: "conv2_2/linear/bn"
top: "conv3_1/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 144
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/expand/bn"
type: "BatchNorm"
bottom: "conv3_1/expand"
top: "conv3_1/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_1/expand/scale"
type: "Scale"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu3_1/expand"
type: "ReLU"
bottom: "conv3_1/expand/bn"
top: "conv3_1/expand/bn"
}
layer {
name: "conv3_1/dwise"
type: "Convolution"
bottom: "conv3_1/expand/bn"
top: "conv3_1/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 144
bias_term: false
pad: 1
kernel_size: 3
group: 144
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_1/dwise/bn"
type: "BatchNorm"
bottom: "conv3_1/dwise"
top: "conv3_1/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_1/dwise/scale"
type: "Scale"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu3_1/dwise"
type: "ReLU"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/dwise/bn"
}
layer {
name: "conv3_1/linear"
type: "Convolution"
bottom: "conv3_1/dwise/bn"
top: "conv3_1/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 24
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_1/linear/bn"
type: "BatchNorm"
bottom: "conv3_1/linear"
top: "conv3_1/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_1/linear/scale"
type: "Scale"
bottom: "conv3_1/linear/bn"
top: "conv3_1/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_3_1"
type: "Eltwise"
bottom: "conv2_2/linear/bn"
bottom: "conv3_1/linear/bn"
top: "block_3_1"
}
layer {
name: "conv3_2/expand"
type: "Convolution"
bottom: "block_3_1"
top: "conv3_2/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 144
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/expand/bn"
type: "BatchNorm"
bottom: "conv3_2/expand"
top: "conv3_2/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_2/expand/scale"
type: "Scale"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu3_2/expand"
type: "ReLU"
bottom: "conv3_2/expand/bn"
top: "conv3_2/expand/bn"
}
layer {
name: "conv3_2/dwise"
type: "Convolution"
bottom: "conv3_2/expand/bn"
top: "conv3_2/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 144
bias_term: false
pad: 1
kernel_size: 3
group: 144
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv3_2/dwise/bn"
type: "BatchNorm"
bottom: "conv3_2/dwise"
top: "conv3_2/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_2/dwise/scale"
type: "Scale"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu3_2/dwise"
type: "ReLU"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/dwise/bn"
}
layer {
name: "conv3_2/linear"
type: "Convolution"
bottom: "conv3_2/dwise/bn"
top: "conv3_2/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3_2/linear/bn"
type: "BatchNorm"
bottom: "conv3_2/linear"
top: "conv3_2/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv3_2/linear/scale"
type: "Scale"
bottom: "conv3_2/linear/bn"
top: "conv3_2/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv4_1/expand"
type: "Convolution"
bottom: "conv3_2/linear/bn"
top: "conv4_1/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/expand/bn"
type: "BatchNorm"
bottom: "conv4_1/expand"
top: "conv4_1/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_1/expand/scale"
type: "Scale"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_1/expand"
type: "ReLU"
bottom: "conv4_1/expand/bn"
top: "conv4_1/expand/bn"
}
layer {
name: "conv4_1/dwise"
type: "Convolution"
bottom: "conv4_1/expand/bn"
top: "conv4_1/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
pad: 1
kernel_size: 3
group: 192
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_1/dwise/bn"
type: "BatchNorm"
bottom: "conv4_1/dwise"
top: "conv4_1/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_1/dwise/scale"
type: "Scale"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_1/dwise"
type: "ReLU"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/dwise/bn"
}
layer {
name: "conv4_1/linear"
type: "Convolution"
bottom: "conv4_1/dwise/bn"
top: "conv4_1/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_1/linear/bn"
type: "BatchNorm"
bottom: "conv4_1/linear"
top: "conv4_1/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_1/linear/scale"
type: "Scale"
bottom: "conv4_1/linear/bn"
top: "conv4_1/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_4_1"
type: "Eltwise"
bottom: "conv3_2/linear/bn"
bottom: "conv4_1/linear/bn"
top: "block_4_1"
}
layer {
name: "conv4_2/expand"
type: "Convolution"
bottom: "block_4_1"
top: "conv4_2/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/expand/bn"
type: "BatchNorm"
bottom: "conv4_2/expand"
top: "conv4_2/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_2/expand/scale"
type: "Scale"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_2/expand"
type: "ReLU"
bottom: "conv4_2/expand/bn"
top: "conv4_2/expand/bn"
}
layer {
name: "conv4_2/dwise"
type: "Convolution"
bottom: "conv4_2/expand/bn"
top: "conv4_2/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
pad: 1
kernel_size: 3
group: 192
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_2/dwise/bn"
type: "BatchNorm"
bottom: "conv4_2/dwise"
top: "conv4_2/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_2/dwise/scale"
type: "Scale"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_2/dwise"
type: "ReLU"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/dwise/bn"
}
layer {
name: "conv4_2/linear"
type: "Convolution"
bottom: "conv4_2/dwise/bn"
top: "conv4_2/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_2/linear/bn"
type: "BatchNorm"
bottom: "conv4_2/linear"
top: "conv4_2/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_2/linear/scale"
type: "Scale"
bottom: "conv4_2/linear/bn"
top: "conv4_2/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_4_2"
type: "Eltwise"
bottom: "block_4_1"
bottom: "conv4_2/linear/bn"
top: "block_4_2"
}
layer {
name: "conv4_3/expand"
type: "Convolution"
bottom: "block_4_2"
top: "conv4_3/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/expand/bn"
type: "BatchNorm"
bottom: "conv4_3/expand"
top: "conv4_3/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_3/expand/scale"
type: "Scale"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_3/expand"
type: "ReLU"
bottom: "conv4_3/expand/bn"
top: "conv4_3/expand/bn"
}
layer {
name: "conv4_3/dwise"
type: "Convolution"
bottom: "conv4_3/expand/bn"
top: "conv4_3/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 192
bias_term: false
pad: 1
kernel_size: 3
group: 192
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_3/dwise/bn"
type: "BatchNorm"
bottom: "conv4_3/dwise"
top: "conv4_3/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_3/dwise/scale"
type: "Scale"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_3/dwise"
type: "ReLU"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/dwise/bn"
}
layer {
name: "conv4_3/linear"
type: "Convolution"
bottom: "conv4_3/dwise/bn"
top: "conv4_3/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_3/linear/bn"
type: "BatchNorm"
bottom: "conv4_3/linear"
top: "conv4_3/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_3/linear/scale"
type: "Scale"
bottom: "conv4_3/linear/bn"
top: "conv4_3/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv4_4/expand"
type: "Convolution"
bottom: "conv4_3/linear/bn"
top: "conv4_4/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/expand/bn"
type: "BatchNorm"
bottom: "conv4_4/expand"
top: "conv4_4/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_4/expand/scale"
type: "Scale"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_4/expand"
type: "ReLU"
bottom: "conv4_4/expand/bn"
top: "conv4_4/expand/bn"
}
layer {
name: "conv4_4/dwise"
type: "Convolution"
bottom: "conv4_4/expand/bn"
top: "conv4_4/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
pad: 1
kernel_size: 3
group: 384
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_4/dwise/bn"
type: "BatchNorm"
bottom: "conv4_4/dwise"
top: "conv4_4/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_4/dwise/scale"
type: "Scale"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_4/dwise"
type: "ReLU"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/dwise/bn"
}
layer {
name: "conv4_4/linear"
type: "Convolution"
bottom: "conv4_4/dwise/bn"
top: "conv4_4/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_4/linear/bn"
type: "BatchNorm"
bottom: "conv4_4/linear"
top: "conv4_4/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_4/linear/scale"
type: "Scale"
bottom: "conv4_4/linear/bn"
top: "conv4_4/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_4_4"
type: "Eltwise"
bottom: "conv4_3/linear/bn"
bottom: "conv4_4/linear/bn"
top: "block_4_4"
}
layer {
name: "conv4_5/expand"
type: "Convolution"
bottom: "block_4_4"
top: "conv4_5/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/expand/bn"
type: "BatchNorm"
bottom: "conv4_5/expand"
top: "conv4_5/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_5/expand/scale"
type: "Scale"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_5/expand"
type: "ReLU"
bottom: "conv4_5/expand/bn"
top: "conv4_5/expand/bn"
}
layer {
name: "conv4_5/dwise"
type: "Convolution"
bottom: "conv4_5/expand/bn"
top: "conv4_5/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
pad: 1
kernel_size: 3
group: 384
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_5/dwise/bn"
type: "BatchNorm"
bottom: "conv4_5/dwise"
top: "conv4_5/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_5/dwise/scale"
type: "Scale"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_5/dwise"
type: "ReLU"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/dwise/bn"
}
layer {
name: "conv4_5/linear"
type: "Convolution"
bottom: "conv4_5/dwise/bn"
top: "conv4_5/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_5/linear/bn"
type: "BatchNorm"
bottom: "conv4_5/linear"
top: "conv4_5/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_5/linear/scale"
type: "Scale"
bottom: "conv4_5/linear/bn"
top: "conv4_5/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_4_5"
type: "Eltwise"
bottom: "block_4_4"
bottom: "conv4_5/linear/bn"
top: "block_4_5"
}
layer {
name: "conv4_6/expand"
type: "Convolution"
bottom: "block_4_5"
top: "conv4_6/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/expand/bn"
type: "BatchNorm"
bottom: "conv4_6/expand"
top: "conv4_6/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_6/expand/scale"
type: "Scale"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_6/expand"
type: "ReLU"
bottom: "conv4_6/expand/bn"
top: "conv4_6/expand/bn"
}
layer {
name: "conv4_6/dwise"
type: "Convolution"
bottom: "conv4_6/expand/bn"
top: "conv4_6/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
pad: 1
kernel_size: 3
group: 384
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_6/dwise/bn"
type: "BatchNorm"
bottom: "conv4_6/dwise"
top: "conv4_6/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_6/dwise/scale"
type: "Scale"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_6/dwise"
type: "ReLU"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/dwise/bn"
}
layer {
name: "conv4_6/linear"
type: "Convolution"
bottom: "conv4_6/dwise/bn"
top: "conv4_6/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_6/linear/bn"
type: "BatchNorm"
bottom: "conv4_6/linear"
top: "conv4_6/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_6/linear/scale"
type: "Scale"
bottom: "conv4_6/linear/bn"
top: "conv4_6/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_4_6"
type: "Eltwise"
bottom: "block_4_5"
bottom: "conv4_6/linear/bn"
top: "block_4_6"
}
layer {
name: "conv4_7/expand"
type: "Convolution"
bottom: "block_4_6"
top: "conv4_7/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/expand/bn"
type: "BatchNorm"
bottom: "conv4_7/expand"
top: "conv4_7/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_7/expand/scale"
type: "Scale"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_7/expand"
type: "ReLU"
bottom: "conv4_7/expand/bn"
top: "conv4_7/expand/bn"
}
layer {
name: "conv4_7/dwise"
type: "Convolution"
bottom: "conv4_7/expand/bn"
top: "conv4_7/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 384
bias_term: false
pad: 1
kernel_size: 3
group: 384
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv4_7/dwise/bn"
type: "BatchNorm"
bottom: "conv4_7/dwise"
top: "conv4_7/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_7/dwise/scale"
type: "Scale"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4_7/dwise"
type: "ReLU"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/dwise/bn"
}
layer {
name: "conv4_7/linear"
type: "Convolution"
bottom: "conv4_7/dwise/bn"
top: "conv4_7/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 96
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4_7/linear/bn"
type: "BatchNorm"
bottom: "conv4_7/linear"
top: "conv4_7/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv4_7/linear/scale"
type: "Scale"
bottom: "conv4_7/linear/bn"
top: "conv4_7/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv5_1/expand"
type: "Convolution"
bottom: "conv4_7/linear/bn"
top: "conv5_1/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/expand/bn"
type: "BatchNorm"
bottom: "conv5_1/expand"
top: "conv5_1/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_1/expand/scale"
type: "Scale"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_1/expand"
type: "ReLU"
bottom: "conv5_1/expand/bn"
top: "conv5_1/expand/bn"
}
layer {
name: "conv5_1/dwise"
type: "Convolution"
bottom: "conv5_1/expand/bn"
top: "conv5_1/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
pad: 1
kernel_size: 3
group: 576
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_1/dwise/bn"
type: "BatchNorm"
bottom: "conv5_1/dwise"
top: "conv5_1/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_1/dwise/scale"
type: "Scale"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_1/dwise"
type: "ReLU"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/dwise/bn"
}
layer {
name: "conv5_1/linear"
type: "Convolution"
bottom: "conv5_1/dwise/bn"
top: "conv5_1/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 96
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_1/linear/bn"
type: "BatchNorm"
bottom: "conv5_1/linear"
top: "conv5_1/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_1/linear/scale"
type: "Scale"
bottom: "conv5_1/linear/bn"
top: "conv5_1/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_5_1"
type: "Eltwise"
bottom: "conv4_7/linear/bn"
bottom: "conv5_1/linear/bn"
top: "block_5_1"
}
layer {
name: "conv5_2/expand"
type: "Convolution"
bottom: "block_5_1"
top: "conv5_2/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/expand/bn"
type: "BatchNorm"
bottom: "conv5_2/expand"
top: "conv5_2/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_2/expand/scale"
type: "Scale"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_2/expand"
type: "ReLU"
bottom: "conv5_2/expand/bn"
top: "conv5_2/expand/bn"
}
layer {
name: "conv5_2/dwise"
type: "Convolution"
bottom: "conv5_2/expand/bn"
top: "conv5_2/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
pad: 1
kernel_size: 3
group: 576
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_2/dwise/bn"
type: "BatchNorm"
bottom: "conv5_2/dwise"
top: "conv5_2/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_2/dwise/scale"
type: "Scale"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_2/dwise"
type: "ReLU"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/dwise/bn"
}
layer {
name: "conv5_2/linear"
type: "Convolution"
bottom: "conv5_2/dwise/bn"
top: "conv5_2/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 96
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_2/linear/bn"
type: "BatchNorm"
bottom: "conv5_2/linear"
top: "conv5_2/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_2/linear/scale"
type: "Scale"
bottom: "conv5_2/linear/bn"
top: "conv5_2/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_5_2"
type: "Eltwise"
bottom: "block_5_1"
bottom: "conv5_2/linear/bn"
top: "block_5_2"
}
layer {
name: "conv5_3/expand"
type: "Convolution"
bottom: "block_5_2"
top: "conv5_3/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/expand/bn"
type: "BatchNorm"
bottom: "conv5_3/expand"
top: "conv5_3/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_3/expand/scale"
type: "Scale"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_3/expand"
type: "ReLU"
bottom: "conv5_3/expand/bn"
top: "conv5_3/expand/bn"
}
layer {
name: "conv5_3/dwise"
type: "Convolution"
bottom: "conv5_3/expand/bn"
top: "conv5_3/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 576
bias_term: false
pad: 1
kernel_size: 3
group: 576
stride: 2
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv5_3/dwise/bn"
type: "BatchNorm"
bottom: "conv5_3/dwise"
top: "conv5_3/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_3/dwise/scale"
type: "Scale"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5_3/dwise"
type: "ReLU"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/dwise/bn"
}
layer {
name: "conv5_3/linear"
type: "Convolution"
bottom: "conv5_3/dwise/bn"
top: "conv5_3/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 160
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5_3/linear/bn"
type: "BatchNorm"
bottom: "conv5_3/linear"
top: "conv5_3/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv5_3/linear/scale"
type: "Scale"
bottom: "conv5_3/linear/bn"
top: "conv5_3/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv6_1/expand"
type: "Convolution"
bottom: "conv5_3/linear/bn"
top: "conv6_1/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/expand/bn"
type: "BatchNorm"
bottom: "conv6_1/expand"
top: "conv6_1/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_1/expand/scale"
type: "Scale"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_1/expand"
type: "ReLU"
bottom: "conv6_1/expand/bn"
top: "conv6_1/expand/bn"
}
layer {
name: "conv6_1/dwise"
type: "Convolution"
bottom: "conv6_1/expand/bn"
top: "conv6_1/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
pad: 1
kernel_size: 3
group: 960
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_1/dwise/bn"
type: "BatchNorm"
bottom: "conv6_1/dwise"
top: "conv6_1/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_1/dwise/scale"
type: "Scale"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_1/dwise"
type: "ReLU"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/dwise/bn"
}
layer {
name: "conv6_1/linear"
type: "Convolution"
bottom: "conv6_1/dwise/bn"
top: "conv6_1/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 160
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_1/linear/bn"
type: "BatchNorm"
bottom: "conv6_1/linear"
top: "conv6_1/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_1/linear/scale"
type: "Scale"
bottom: "conv6_1/linear/bn"
top: "conv6_1/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_6_1"
type: "Eltwise"
bottom: "conv5_3/linear/bn"
bottom: "conv6_1/linear/bn"
top: "block_6_1"
}
layer {
name: "conv6_2/expand"
type: "Convolution"
bottom: "block_6_1"
top: "conv6_2/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/expand/bn"
type: "BatchNorm"
bottom: "conv6_2/expand"
top: "conv6_2/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_2/expand/scale"
type: "Scale"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_2/expand"
type: "ReLU"
bottom: "conv6_2/expand/bn"
top: "conv6_2/expand/bn"
}
layer {
name: "conv6_2/dwise"
type: "Convolution"
bottom: "conv6_2/expand/bn"
top: "conv6_2/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
pad: 1
kernel_size: 3
group: 960
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_2/dwise/bn"
type: "BatchNorm"
bottom: "conv6_2/dwise"
top: "conv6_2/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_2/dwise/scale"
type: "Scale"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_2/dwise"
type: "ReLU"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/dwise/bn"
}
layer {
name: "conv6_2/linear"
type: "Convolution"
bottom: "conv6_2/dwise/bn"
top: "conv6_2/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 160
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_2/linear/bn"
type: "BatchNorm"
bottom: "conv6_2/linear"
top: "conv6_2/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_2/linear/scale"
type: "Scale"
bottom: "conv6_2/linear/bn"
top: "conv6_2/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "block_6_2"
type: "Eltwise"
bottom: "block_6_1"
bottom: "conv6_2/linear/bn"
top: "block_6_2"
}
layer {
name: "conv6_3/expand"
type: "Convolution"
bottom: "block_6_2"
top: "conv6_3/expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/expand/bn"
type: "BatchNorm"
bottom: "conv6_3/expand"
top: "conv6_3/expand/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_3/expand/scale"
type: "Scale"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_3/expand"
type: "ReLU"
bottom: "conv6_3/expand/bn"
top: "conv6_3/expand/bn"
}
layer {
name: "conv6_3/dwise"
type: "Convolution"
bottom: "conv6_3/expand/bn"
top: "conv6_3/dwise"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 960
bias_term: false
pad: 1
kernel_size: 3
group: 960
weight_filler {
type: "msra"
}
engine: CAFFE
}
}
layer {
name: "conv6_3/dwise/bn"
type: "BatchNorm"
bottom: "conv6_3/dwise"
top: "conv6_3/dwise/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_3/dwise/scale"
type: "Scale"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_3/dwise"
type: "ReLU"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/dwise/bn"
}
layer {
name: "conv6_3/linear"
type: "Convolution"
bottom: "conv6_3/dwise/bn"
top: "conv6_3/linear"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 320
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_3/linear/bn"
type: "BatchNorm"
bottom: "conv6_3/linear"
top: "conv6_3/linear/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_3/linear/scale"
type: "Scale"
bottom: "conv6_3/linear/bn"
top: "conv6_3/linear/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv6_4"
type: "Convolution"
bottom: "conv6_3/linear/bn"
top: "conv6_4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1280
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6_4/bn"
type: "BatchNorm"
bottom: "conv6_4"
top: "conv6_4/bn"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
batch_norm_param {
use_global_stats: true
eps: 1e-5
}
}
layer {
name: "conv6_4/scale"
type: "Scale"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
param {
lr_mult: 1
decay_mult: 0
}
param {
lr_mult: 1
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6_4"
type: "ReLU"
bottom: "conv6_4/bn"
top: "conv6_4/bn"
}
layer {
name: "pool6"
type: "Pooling"
bottom: "conv6_4/bn"
top: "pool6"
pooling_param {
pool: AVE
global_pooling: true
}
}
layer {
name: "fc7"
type: "Convolution"
bottom: "pool6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 1000
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc7"
top: "prob"
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/xiao_feng_feng/MobileNet-Caffe.git
git@gitee.com:xiao_feng_feng/MobileNet-Caffe.git
xiao_feng_feng
MobileNet-Caffe
MobileNet-Caffe
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385