1 Star 0 Fork 0

项三六/pix2pixHD

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
run_engine.py 5.71 KB
一键复制 编辑 原始数据 按行查看 历史
Boris Fomitchev 提交于 2018-05-08 20:18 . ONNX export is working
import os
import sys
from random import randint
import numpy as np
import tensorrt
try:
from PIL import Image
import pycuda.driver as cuda
import pycuda.gpuarray as gpuarray
import pycuda.autoinit
import argparse
except ImportError as err:
sys.stderr.write("""ERROR: failed to import module ({})
Please make sure you have pycuda and the example dependencies installed.
https://wiki.tiker.net/PyCuda/Installation/Linux
pip(3) install tensorrt[examples]
""".format(err))
exit(1)
try:
import tensorrt as trt
from tensorrt.parsers import caffeparser
from tensorrt.parsers import onnxparser
except ImportError as err:
sys.stderr.write("""ERROR: failed to import module ({})
Please make sure you have the TensorRT Library installed
and accessible in your LD_LIBRARY_PATH
""".format(err))
exit(1)
G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO)
class Profiler(trt.infer.Profiler):
"""
Example Implimentation of a Profiler
Is identical to the Profiler class in trt.infer so it is possible
to just use that instead of implementing this if further
functionality is not needed
"""
def __init__(self, timing_iter):
trt.infer.Profiler.__init__(self)
self.timing_iterations = timing_iter
self.profile = []
def report_layer_time(self, layerName, ms):
record = next((r for r in self.profile if r[0] == layerName), (None, None))
if record == (None, None):
self.profile.append((layerName, ms))
else:
self.profile[self.profile.index(record)] = (record[0], record[1] + ms)
def print_layer_times(self):
totalTime = 0
for i in range(len(self.profile)):
print("{:40.40} {:4.3f}ms".format(self.profile[i][0], self.profile[i][1] / self.timing_iterations))
totalTime += self.profile[i][1]
print("Time over all layers: {:4.2f} ms per iteration".format(totalTime / self.timing_iterations))
def get_input_output_names(trt_engine):
nbindings = trt_engine.get_nb_bindings();
maps = []
for b in range(0, nbindings):
dims = trt_engine.get_binding_dimensions(b).to_DimsCHW()
name = trt_engine.get_binding_name(b)
type = trt_engine.get_binding_data_type(b)
if (trt_engine.binding_is_input(b)):
maps.append(name)
print("Found input: ", name)
else:
maps.append(name)
print("Found output: ", name)
print("shape=" + str(dims.C()) + " , " + str(dims.H()) + " , " + str(dims.W()))
print("dtype=" + str(type))
return maps
def create_memory(engine, name, buf, mem, batchsize, inp, inp_idx):
binding_idx = engine.get_binding_index(name)
if binding_idx == -1:
raise AttributeError("Not a valid binding")
print("Binding: name={}, bindingIndex={}".format(name, str(binding_idx)))
dims = engine.get_binding_dimensions(binding_idx).to_DimsCHW()
eltCount = dims.C() * dims.H() * dims.W() * batchsize
if engine.binding_is_input(binding_idx):
h_mem = inp[inp_idx]
inp_idx = inp_idx + 1
else:
h_mem = np.random.uniform(0.0, 255.0, eltCount).astype(np.dtype('f4'))
d_mem = cuda.mem_alloc(eltCount * 4)
cuda.memcpy_htod(d_mem, h_mem)
buf.insert(binding_idx, int(d_mem))
mem.append(d_mem)
return inp_idx
#Run inference on device
def time_inference(engine, batch_size, inp):
bindings = []
mem = []
inp_idx = 0
for io in get_input_output_names(engine):
inp_idx = create_memory(engine, io, bindings, mem,
batch_size, inp, inp_idx)
context = engine.create_execution_context()
g_prof = Profiler(500)
context.set_profiler(g_prof)
for i in range(iter):
context.execute(batch_size, bindings)
g_prof.print_layer_times()
context.destroy()
return
def convert_to_datatype(v):
if v==8:
return trt.infer.DataType.INT8
elif v==16:
return trt.infer.DataType.HALF
elif v==32:
return trt.infer.DataType.FLOAT
else:
print("ERROR: Invalid model data type bit depth: " + str(v))
return trt.infer.DataType.INT8
def run_trt_engine(engine_file, bs, it):
engine = trt.utils.load_engine(G_LOGGER, engine_file)
time_inference(engine, bs, it)
def run_onnx(onnx_file, data_type, bs, inp):
# Create onnx_config
apex = onnxparser.create_onnxconfig()
apex.set_model_file_name(onnx_file)
apex.set_model_dtype(convert_to_datatype(data_type))
# create parser
trt_parser = onnxparser.create_onnxparser(apex)
assert(trt_parser)
data_type = apex.get_model_dtype()
onnx_filename = apex.get_model_file_name()
trt_parser.parse(onnx_filename, data_type)
trt_parser.report_parsing_info()
trt_parser.convert_to_trtnetwork()
trt_network = trt_parser.get_trtnetwork()
assert(trt_network)
# create infer builder
trt_builder = trt.infer.create_infer_builder(G_LOGGER)
trt_builder.set_max_batch_size(max_batch_size)
trt_builder.set_max_workspace_size(max_workspace_size)
if (apex.get_model_dtype() == trt.infer.DataType_kHALF):
print("------------------- Running FP16 -----------------------------")
trt_builder.set_half2_mode(True)
elif (apex.get_model_dtype() == trt.infer.DataType_kINT8):
print("------------------- Running INT8 -----------------------------")
trt_builder.set_int8_mode(True)
else:
print("------------------- Running FP32 -----------------------------")
print("----- Builder is Done -----")
print("----- Creating Engine -----")
trt_engine = trt_builder.build_cuda_engine(trt_network)
print("----- Engine is built -----")
time_inference(engine, bs, inp)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/xiangsanliu/pix2pixHD.git
git@gitee.com:xiangsanliu/pix2pixHD.git
xiangsanliu
pix2pixHD
pix2pixHD
master

搜索帮助