1 Star 0 Fork 7

夏汉林/nwcommands

forked from 连享会/nwcommands 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
nwcorrelate.ado 9.02 KB
一键复制 编辑 原始数据 按行查看 历史
ThomasGrund 提交于 2015-09-18 19:13 . v1.5.1
*! Date : 3sept2014
*! Version : 1.0.4
*! Author : Thomas Grund, Linkoping University
*! Email : contact@nwcommands.org
capture program drop nwcorrelate
program nwcorrelate
gettoken anything opts: 0, parse(",")
local ifstart = strpos("`anything'", "if")
local netname = cond(`ifstart'!= 0, substr("`anything'",1,`=`ifstart'-1'), "`anything'")
local ifcond = cond(`ifstart'!= 0, substr("`anything'",`=`ifstart' + 3',.), "")
local ifcond = "ifcond(`ifcond')"
local 0 "`netname' `opts'"
syntax [anything(name=netname)] [, ATTribute(string) * ]
_nwsyntax `netname', min(1) max(2)
if "`attribute'"!= "" {
nwcorrelate_nets `netname', `ifcond' attribute(`attribute') `options'
}
if `networks' == 2 {
nwcorrelate_nets `netname', `ifcond' `options'
}
if `networks' == 1 & "`attribute'" == ""{
nwcorrelate_nodes `netname', `ifcond' `options'
}
end
capture program drop nwcorrelate_nodes
program nwcorrelate_nodes
syntax [anything(name=netname)] [, ifcond(string) name(string) context(string)]
_nwsyntax `netname'
// Deal with if condition
if "`name'" == "" {
local name = "_corr"
}
capture nwdrop `name'
local neighborhood = 1
if "`context'" == "incoming" {
local neighborhood = 2
}
if "`context'" == "both" {
local neighborhood = 3
}
nwtomatafast `netname'
mata: corr = correlate_nodes(`r(mata)', `neighborhood')
if "`ifcond'" != "" {
_nwevalnetexp `ifcond' % _ifnet, nodes(`nodes')
mata: corr = corr :* _ifnet + (J(`nodes',`nodes', 1) :- _ifnet):* (-9999)
mata: _editvalue(corr, -9999,.)
mata: mata drop _ifnet
}
nwset, mat(corr) name("`name'")
mata: _diag(corr, .)
mata: st_rclear()
mata: st_numscalar("r(avg_corr)", ( sum(corr) / sum(corr:!=.)))
mata: mata drop corr
mata: st_global("r(name)", "`netname'")
mata: st_global("r(corrname)", "`name'")
mata: st_global("r(context)", "`context'")
di
di "{txt} Network name: {res}`r(name)'"
di "{txt} Correlation name: {res}`r(corrname)'"
di "{hline 40}"
di "{txt} Context definition: {res}`r(context)'"
di "{txt} Average Correlation Between Nodes: {res}`r(avg_corr)'"
end
capture program drop nwcorrelate_nets
program nwcorrelate_nets
syntax [anything(name=netnames)] [, ifcond(string) context(string) mode(string) ATTRibute(string) PERMutations(integer 1) SAVe(string asis) *]
_nwsyntax `netnames', max(2) min(1)
local netnames `netname'
// Set mode.
if "`mode'" == "" {
local mode = "same"
}
// Get networks.
local num = wordcount("`netnames'")
if (`num' == 0) {
di "{err}Network not found."
error 6001
}
if "`ifcond'" != "" {
_nwevalnetexp `ifcond' % ifcond, nodes(`nodes')
}
else {
mata: ifcond = J(`nodes',`nodes', 1)
}
local net1 = word("`netnames'",1)
if "`attribute'" != "" {
local attr = word("`attribute'", 1)
confirm variable `attr'
capture nwdrop `mode'_`attr'
nwexpand `attr', mode(`mode')
local net2 = "`mode'_`attr'"
}
else {
if (`num' < 2) {
di "{err}Wrong number of networks."
error 6055
}
local net2 = word("`netnames'",2)
}
// Check that networks exists.
nwname `net1'
local id1 = r(id)
local nodes1 = r(nodes)
nwtomata `net1', mat(corrnet1)
nwname `net2'
local id2 = r(id)
local nodes2 = r(nodes)
nwtomata `net2', mat(corrnet2)
if (`nodes1' != `nodes2'){
di "{err}Networks of different size."
error 6056
}
local bandwidth `= 1 / `nodes1''
// Return the names and id's of the networks that are correlated with each other.
mata: st_rclear()
mata: st_global("r(name_2)", "`net2'")
mata: st_global("r(name_1)", "`net1'")
mata: st_numscalar("r(id_1)", `id1')
mata: st_numscalar("r(id_2)", `id2')
mata: corr = correlate_nets(corrnet1, corrnet2, ifcond)
// Simply calculate correlation of two networks.
if `permutations' == 1 {
mata: st_numscalar("r(corr)",corr)
mata: mata drop corrnet1 corrnet2
}
// Calculate correlations of network2 with permutations of network1
else qui {
mata: corr_reps = correlate_nets_rep(`permutations', corrnet1, corrnet2, ifcond)
capture _return drop _all
tempname myr
_return hold `myr'
if "`scheme'" == "" {
local scheme = "s2color"
}
preserve
drop _all
mata: st_numscalar("r(corr)", corr)
nwtostata, mat(corr_reps) gen(correlation)
gen observed = r(corr)
if "`save'"!= "" {
di "QAP results saved as: `c(pwd)'/nwcorrelationqap.dta"
save "`save'", replace
}
qui count
local count_total `r(N)'
mata: st_numscalar("r(corr)", corr)
if `r(corr)' > 0 {
qui count if correlation >= `r(corr)'
}
else {
qui count if correlation <= `r(corr)'
}
local count_out `r(N)'
mata: pvalue = `count_out' / `count_total'
_pctile correlation, percentiles(2.5 97.5)
mata: lb = `r(r1)'
mata: ub = `r(r2)'
sum correlation
local xmin = r(min)
local xmax = r(max)
mata: st_numscalar("r(corr)", corr)
if `r(corr)' < `xmin' {
local xmin = `r(corr)'
}
if `r(corr)' > `xmax' {
local xmax = `r(corr)'
}
kdensity correlation, xscale(range(`xmin' `xmax')) bwidth(`bandwidth') title("Corr(`net1', `net2')") ytitle("density") xline(`r(corr)',lpattern(dash)) xlabel(#5) note(`"based on `permutations' QAP permutations of network `net1'"') `options'
restore
_return restore `myr'
mata: st_numscalar("r(lb)",lb)
mata: st_numscalar("r(ub)",ub)
mata: st_numscalar("r(pvalue)", pvalue)
mata: st_numscalar("r(corr)", corr)
}
di "{hline 40}"
di "{txt} Network name: {res}`r(name_1)'"
if "`attribute'" != "" {
di "{txt} Attribute: {res}`r(name_2)'"
}
else {
di "{txt} Network2 name: {res}`r(name_2)'"
}
di "{hline 40}"
di "{txt} Correlation: {res}`r(corr)'"
if "`r(pvalue)'" != "" {
di "{txt} P-value: {res}`r(pvalue)'"
}
_return hold r1
if "`attribute'" != "" {
capture nwdrop `net2'
}
_return restore r1
capture mata: mata drop ifcond
end
capture mata mata drop correlate_nets_rep()
capture mata mata drop correlate_nets()
capture mata: mata drop correlate_nodes()
mata:
real matrix correlate_nodes(real matrix net, scalar outinboth){
C = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(net); i++){
for(j = 1; j<= cols(net); j++){
selection = J(1, cols(net), 1)
selection[i] = 0
selection[j] = 0
i_outvec = (select(net[i,.], selection))'
i_invec = (select(net[.,i]', selection))'
j_outvec = (select(net[j,.], selection))'
j_invec = (select(net[.,j]', selection))'
if (outinboth == 1) {
temp = J(rows(i_outvec), 2, 0)
temp[.,1] = i_outvec
temp[.,2] = j_outvec
Corr = correlation(temp)
if (Corr[2,1]==.){
ctemp = (sum(i_outvec), sum(j_outvec))
cmax = max(ctemp)
cmin = min(ctemp)
if (cmin > 0) {
Corr[2,1] = cmin / cmax
}
if (cmin == 0 & cmax > 0) {
Corr[2,1] = -1
}
if (cmin == 0 & cmax == 0) {
Corr[2,1] = 1
}
}
C[i,j] = Corr[2,1]
}
if (outinboth == 2) {
temp = J(rows(i_invec), 2, 0)
temp[.,1] = i_intvec
temp[.,2] = j_invec
Corr = correlation(temp)
if (Corr[2,1]==.){
ctemp = (sum(i_outvec), sum(j_outvec))
cmax = max(ctemp)
cmin = min(ctemp)
if (cmin > 0) {
Corr[2,1] = cmin / cmax
}
if (cmin == 0 & cmax > 0) {
Corr[2,1] = -1
}
if (cmin == 0 & cmax == 0) {
Corr[2,1] = 1
}
}
C[i,j] = Corr[2,1]
}
if (outinboth == 3) {
num_cols = cols(i_outvec)
num_rows = rows(i_invec)
num = nim_cols + num_rows
temp = J(num,2,0)
temp[(1::num_cols),1] = i_outvec
temp[((num_cols + 1)::num),1] = i_invec
temp[(1::num_cols),2] = j_outvec
temp[((num_cols + 1)::num),2] = j_invec
Corr = correlation(temp)
if (Corr[2,1]==.){
ctemp = (sum(i_outvec), sum(j_outvec))
cmax = max(ctemp)
cmin = min(ctemp)
if (cmin > 0) {
Corr[2,1] = cmin / cmax
}
if (cmin == 0 & cmax > 0) {
Corr[2,1] = -1
}
if (cmin == 0 & cmax == 0) {
Corr[2,1] = 1
}
}
C[i,j] = Corr[2,1]
}
}
}
return(C)
}
real matrix correlate_nets_rep(real scalar reps, real matrix net1, real matrix net2, real matrix ifcond){
temp_net1 = net1
nsize = rows(temp_net1)
results = J(reps, 1, 0)
for (i = 1; i <= reps; i ++) {
permutationVec = unorder(nsize)
perm_net1 = temp_net1[permutationVec, permutationVec]
results[i] = correlate_nets(perm_net1, net2, ifcond)
}
return(results)
}
real scalar correlate_nets(real matrix net1, real matrix net2, real matrix ifcond){
r = rows(net1)
c = cols(net1)
Z = J(r,c,1) - I(r,c)
temp = J((r * (c - 1)),2, 0)
temp[.,1] = select(vec(net1), vec(Z))
temp[.,2] = select(vec(net2), vec(Z))
tempif = select(vec(ifcond), vec(Z))
temp = select(temp, tempif)
corr = correlation(temp)
return(corr[2,1])
}
end
*! v1.5.0 __ 17 Sep 2015 __ 13:09:53
*! v1.5.1 __ 17 Sep 2015 __ 14:54:23
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/xiahanlin/nwcommands.git
git@gitee.com:xiahanlin/nwcommands.git
xiahanlin
nwcommands
nwcommands
master

搜索帮助