1 Star 0 Fork 6

xht666/RobustVideoMatting

forked from lifw88/RobustVideoMatting 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
inference.py 8.68 KB
一键复制 编辑 原始数据 按行查看 历史
Peter Lin 提交于 2021-06-12 07:50 . Official code release
"""
python inference.py \
--variant mobilenetv3 \
--checkpoint "CHECKPOINT" \
--device cuda \
--input-source "input.mp4" \
--output-type video \
--output-composition "composition.mp4" \
--output-alpha "alpha.mp4" \
--output-foreground "foreground.mp4" \
--output-video-mbps 4 \
--seq-chunk 1
"""
import torch
import os
from torch.utils.data import DataLoader
from torchvision import transforms
from typing import Optional, Tuple
from tqdm.auto import tqdm
from inference_utils import VideoReader, VideoWriter, ImageSequenceReader, ImageSequenceWriter
def convert_video(model,
input_source: str,
input_resize: Optional[Tuple[int, int]] = None,
downsample_ratio: Optional[float] = None,
output_type: str = 'video',
output_composition: Optional[str] = None,
output_alpha: Optional[str] = None,
output_foreground: Optional[str] = None,
output_video_mbps: Optional[float] = None,
seq_chunk: int = 1,
num_workers: int = 0,
progress: bool = True,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None):
"""
Args:
input_source:A video file, or an image sequence directory. Images must be sorted in accending order, support png and jpg.
input_resize: If provided, the input are first resized to (w, h).
downsample_ratio: The model's downsample_ratio hyperparameter. If not provided, model automatically set one.
output_type: Options: ["video", "png_sequence"].
output_composition:
The composition output path. File path if output_type == 'video'. Directory path if output_type == 'png_sequence'.
If output_type == 'video', the composition has green screen background.
If output_type == 'png_sequence'. the composition is RGBA png images.
output_alpha: The alpha output from the model.
output_foreground: The foreground output from the model.
seq_chunk: Number of frames to process at once. Increase it for better parallelism.
num_workers: PyTorch's DataLoader workers. Only use >0 for image input.
progress: Show progress bar.
device: Only need to manually provide if model is a TorchScript freezed model.
dtype: Only need to manually provide if model is a TorchScript freezed model.
"""
assert downsample_ratio is None or (downsample_ratio > 0 and downsample_ratio <= 1), 'Downsample ratio must be between 0 (exclusive) and 1 (inclusive).'
assert any([output_composition, output_alpha, output_foreground]), 'Must provide at least one output.'
assert output_type in ['video', 'png_sequence'], 'Only support "video" and "png_sequence" output modes.'
assert seq_chunk >= 1, 'Sequence chunk must be >= 1'
assert num_workers >= 0, 'Number of workers must be >= 0'
assert output_video_mbps == None or output_type == 'video', 'Mbps is not available for png_sequence output.'
# Initialize transform
if input_resize is not None:
transform = transforms.Compose([
transforms.Resize(input_resize[::-1]),
transforms.ToTensor()
])
else:
transform = transforms.ToTensor()
# Initialize reader
if os.path.isfile(input_source):
source = VideoReader(input_source, transform)
else:
source = ImageSequenceReader(input_source, transform)
reader = DataLoader(source, batch_size=seq_chunk, pin_memory=True, num_workers=num_workers)
# Initialize writers
if output_type == 'video':
frame_rate = source.frame_rate if isinstance(source, VideoReader) else 30
output_video_mbps = 1 if output_video_mbps is None else output_video_mbps
if output_composition is not None:
writer_com = VideoWriter(
path=output_composition,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000))
if output_alpha is not None:
writer_pha = VideoWriter(
path=output_alpha,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000))
if output_foreground is not None:
writer_fgr = VideoWriter(
path=output_foreground,
frame_rate=frame_rate,
bit_rate=int(output_video_mbps * 1000000))
else:
if output_composition is not None:
writer_com = ImageSequenceWriter(output_composition, 'png')
if output_alpha is not None:
writer_pha = VideoWriter(output_alpha, 'png')
if output_foreground is not None:
writer_fgr = VideoWriter(output_foreground, 'png')
# Inference
model = model.eval()
if device is None or dtype is None:
param = next(model.parameters())
dtype = param.dtype
device = param.device
if (output_composition is not None) and (output_type == 'video'):
bgr = torch.tensor([120, 255, 155], device=device, dtype=dtype).div(255).view(1, 1, 3, 1, 1)
try:
with torch.no_grad():
bar = tqdm(total=len(source), disable=not progress, dynamic_ncols=True)
rec = [None] * 4
for src in reader:
if downsample_ratio is None:
downsample_ratio = auto_downsample_ratio(*src.shape[2:])
src = src.to(device, dtype, non_blocking=True).unsqueeze(0) # [B, T, C, H, W]
fgr, pha, *rec = model(src, *rec, downsample_ratio)
if output_foreground is not None:
writer_fgr.write(fgr[0])
if output_alpha is not None:
writer_pha.write(pha[0])
if output_composition is not None:
if output_type == 'video':
com = fgr * pha + bgr * (1 - pha)
else:
fgr = fgr * pha.gt(0)
com = torch.cat([fgr, pha], dim=-3)
writer_com.write(com[0])
bar.update(src.size(1))
finally:
# Clean up
if output_composition is not None:
writer_com.close()
if output_alpha is not None:
writer_pha.close()
if output_foreground is not None:
writer_fgr.close()
def auto_downsample_ratio(h, w):
"""
Automatically find a downsample ratio so that the largest side of the resolution be 512px.
"""
return min(512 / max(h, w), 1)
class Converter:
def __init__(self, variant: str, checkpoint: str, device: str):
self.model = MattingNetwork(variant).eval().to(device)
self.model.load_state_dict(torch.load(checkpoint, map_location=device))
self.model = torch.jit.script(self.model)
self.model = torch.jit.freeze(self.model)
self.device = device
def convert(self, *args, **kwargs):
convert_video(self.model, device=self.device, dtype=torch.float32, *args, **kwargs)
if __name__ == '__main__':
import argparse
from model import MattingNetwork
parser = argparse.ArgumentParser()
parser.add_argument('--variant', type=str, required=True, choices=['mobilenetv3', 'resnet50'])
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--device', type=str, required=True)
parser.add_argument('--input-source', type=str, required=True)
parser.add_argument('--input-resize', type=int, default=None, nargs=2)
parser.add_argument('--downsample-ratio', type=float)
parser.add_argument('--output-composition', type=str)
parser.add_argument('--output-alpha', type=str)
parser.add_argument('--output-foreground', type=str)
parser.add_argument('--output-type', type=str, required=True, choices=['video', 'png_sequence'])
parser.add_argument('--output-video-mbps', type=int, default=1)
parser.add_argument('--seq-chunk', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument('--disable-progress', action='store_true')
args = parser.parse_args()
converter = Converter(args.variant, args.checkpoint, args.device)
converter.convert(
input_source=args.input_source,
input_resize=args.input_resize,
downsample_ratio=args.downsample_ratio,
output_type=args.output_type,
output_composition=args.output_composition,
output_alpha=args.output_alpha,
output_foreground=args.output_foreground,
output_video_mbps=args.output_video_mbps,
seq_chunk=args.seq_chunk,
num_workers=args.num_workers,
progress=not args.disable_progress
)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/xht666/RobustVideoMatting.git
git@gitee.com:xht666/RobustVideoMatting.git
xht666
RobustVideoMatting
RobustVideoMatting
master

搜索帮助