EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、高效、准确的车牌识别引擎。相比于其他的车牌识别系统,EasyPR有如下特点:* 它基于openCV这个开源库。这意味着你可以获取全部源代码,并且移植到java等平台。* 它能够识别中文。例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。* 它的识别率较高。图片清晰情况下,车牌检测与字符识别可以达到80%以上的精度。
EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、高效、准确的车牌识别引擎。相比于其他的车牌识别系统,EasyPR有如下特点:* 它基于openCV这个开源库。这意味着你可以获取全部源代码,并且移植到java等平台。* 它能够识别中文。例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。* 它的识别率较高。图片清晰情况下,车牌检测与字符识别可以达到80%以上的精度。
参考YAD2K项目,用tensorflow2.2是实现yolov2,
使用小程序来实现人脸识别和活体检测 目标检测:tensorflow的目标检测框架,RetinaNet,YOLOv3-5都实现 人脸识别:Facenet 后台:flask
自动驾驶小车,使用opencv和深度学习进行自动驾驶
使用tf2和keras实现yolov3
最近一年贡献:0 次
最长连续贡献:0 日
最近连续贡献:0 日
贡献度的统计数据包括代码提交、创建任务 / Pull Request、合并 Pull Request,其中代码提交的次数需本地配置的 git 邮箱是 Gitee 帐号已确认绑定的才会被统计。