1 Star 2 Fork 2

wspxa/LibADMM

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
readme.txt 1.53 KB
一键复制 编辑 原始数据 按行查看 历史
Canyi Lu 提交于 2018-06-22 21:43 . Add files via upload
LibADMM: A Library of ADMM for Sparse and Low-rank Optimization
This package solves several sparse and low-rank optimization problems by M-ADMM proposed in our work
C. Lu, J. Feng, S. Yan, Z. Lin. A Unified Alternating Direction Method of Multipliers by Majorization Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, pp. 527-541, 2018
The folder "LibADMM" contains three subfolders:
1. algorithms: the main solvers.
2. proximal_operators: the proximal operators of several functions used in the subproblems of M-ADMM.
3. tensor_tools: some basic tools for tensors.
Besides the subfolders, we also three functions, "test_sparse_models.m", "test_low_rank_matrix_models.m", and "test_low_rank_tensor_models.m" which provide the examples for all the solvers implemented in this package.
You are also suggested to read the manual at https://canyilu.github.io/publications/2016-software-LibADMM.pdf.
For any problems, please contact Canyi Lu (canyilu@gmail.com).
Version 1.0 (Jun, 2016)
Version 1.1 (Jun, 2018)
- add a new model about low-rank tensor recovery from Gaussian measurements based on tensor nuclear norm and the corresponding function lrtr_Gaussian_tnn.m
- update several functions to improve the efficiency, including prox_tnn.m, tprod.m, tran.m, tubalrank.m, and nmodeproduct.m
- update the three example functions: example_sparse_models.m, example_low_rank_matrix_models.m, and example_low_rank_tensor_models.m
- remove the test on image data and some unnecessary functions
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/wspxa/LibADMM.git
git@gitee.com:wspxa/LibADMM.git
wspxa
LibADMM
LibADMM
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385