1 Star 1 Fork 0

wftdly001/PRNet

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
demo.py 7.78 KB
一键复制 编辑 原始数据 按行查看 历史
scott-vsi 提交于 2018-10-11 13:48 . fixed indice
import numpy as np
import os
from glob import glob
import scipy.io as sio
from skimage.io import imread, imsave
from skimage.transform import rescale, resize
from time import time
import argparse
import ast
from api import PRN
from utils.estimate_pose import estimate_pose
from utils.rotate_vertices import frontalize
from utils.render_app import get_visibility, get_uv_mask, get_depth_image
from utils.write import write_obj_with_colors, write_obj_with_texture
def main(args):
if args.isShow or args.isTexture:
import cv2
from utils.cv_plot import plot_kpt, plot_vertices, plot_pose_box
# ---- init PRN
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu # GPU number, -1 for CPU
prn = PRN(is_dlib = args.isDlib)
# ------------- load data
image_folder = args.inputDir
save_folder = args.outputDir
if not os.path.exists(save_folder):
os.mkdir(save_folder)
types = ('*.jpg', '*.png')
image_path_list= []
for files in types:
image_path_list.extend(glob(os.path.join(image_folder, files)))
total_num = len(image_path_list)
for i, image_path in enumerate(image_path_list):
name = image_path.strip().split('/')[-1][:-4]
# read image
image = imread(image_path)
[h, w, c] = image.shape
if c>3:
image = image[:,:,:3]
# the core: regress position map
if args.isDlib:
max_size = max(image.shape[0], image.shape[1])
if max_size> 1000:
image = rescale(image, 1000./max_size)
image = (image*255).astype(np.uint8)
pos = prn.process(image) # use dlib to detect face
else:
if image.shape[0] == image.shape[1]:
image = resize(image, (256,256))
pos = prn.net_forward(image/255.) # input image has been cropped to 256x256
else:
box = np.array([0, image.shape[1]-1, 0, image.shape[0]-1]) # cropped with bounding box
pos = prn.process(image, box)
image = image/255.
if pos is None:
continue
if args.is3d or args.isMat or args.isPose or args.isShow:
# 3D vertices
vertices = prn.get_vertices(pos)
if args.isFront:
save_vertices = frontalize(vertices)
else:
save_vertices = vertices.copy()
save_vertices[:,1] = h - 1 - save_vertices[:,1]
if args.isImage:
imsave(os.path.join(save_folder, name + '.jpg'), image)
if args.is3d:
# corresponding colors
colors = prn.get_colors(image, vertices)
if args.isTexture:
if args.texture_size != 256:
pos_interpolated = resize(pos, (args.texture_size, args.texture_size), preserve_range = True)
else:
pos_interpolated = pos.copy()
texture = cv2.remap(image, pos_interpolated[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0))
if args.isMask:
vertices_vis = get_visibility(vertices, prn.triangles, h, w)
uv_mask = get_uv_mask(vertices_vis, prn.triangles, prn.uv_coords, h, w, prn.resolution_op)
uv_mask = resize(uv_mask, (args.texture_size, args.texture_size), preserve_range = True)
texture = texture*uv_mask[:,:,np.newaxis]
write_obj_with_texture(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, texture, prn.uv_coords/prn.resolution_op)#save 3d face with texture(can open with meshlab)
else:
write_obj_with_colors(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, colors) #save 3d face(can open with meshlab)
if args.isDepth:
depth_image = get_depth_image(vertices, prn.triangles, h, w, True)
depth = get_depth_image(vertices, prn.triangles, h, w)
imsave(os.path.join(save_folder, name + '_depth.jpg'), depth_image)
sio.savemat(os.path.join(save_folder, name + '_depth.mat'), {'depth':depth})
if args.isMat:
sio.savemat(os.path.join(save_folder, name + '_mesh.mat'), {'vertices': vertices, 'colors': colors, 'triangles': prn.triangles})
if args.isKpt or args.isShow:
# get landmarks
kpt = prn.get_landmarks(pos)
np.savetxt(os.path.join(save_folder, name + '_kpt.txt'), kpt)
if args.isPose or args.isShow:
# estimate pose
camera_matrix, pose = estimate_pose(vertices)
np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose)
np.savetxt(os.path.join(save_folder, name + '_camera_matrix.txt'), camera_matrix)
np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose)
if args.isShow:
# ---------- Plot
image_pose = plot_pose_box(image, camera_matrix, kpt)
cv2.imshow('sparse alignment', plot_kpt(image, kpt))
cv2.imshow('dense alignment', plot_vertices(image, vertices))
cv2.imshow('pose', plot_pose_box(image, camera_matrix, kpt))
cv2.waitKey(0)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network')
parser.add_argument('-i', '--inputDir', default='TestImages/', type=str,
help='path to the input directory, where input images are stored.')
parser.add_argument('-o', '--outputDir', default='TestImages/results', type=str,
help='path to the output directory, where results(obj,txt files) will be stored.')
parser.add_argument('--gpu', default='0', type=str,
help='set gpu id, -1 for CPU')
parser.add_argument('--isDlib', default=True, type=ast.literal_eval,
help='whether to use dlib for detecting face, default is True, if False, the input image should be cropped in advance')
parser.add_argument('--is3d', default=True, type=ast.literal_eval,
help='whether to output 3D face(.obj). default save colors.')
parser.add_argument('--isMat', default=False, type=ast.literal_eval,
help='whether to save vertices,color,triangles as mat for matlab showing')
parser.add_argument('--isKpt', default=False, type=ast.literal_eval,
help='whether to output key points(.txt)')
parser.add_argument('--isPose', default=False, type=ast.literal_eval,
help='whether to output estimated pose(.txt)')
parser.add_argument('--isShow', default=False, type=ast.literal_eval,
help='whether to show the results with opencv(need opencv)')
parser.add_argument('--isImage', default=False, type=ast.literal_eval,
help='whether to save input image')
# update in 2017/4/10
parser.add_argument('--isFront', default=False, type=ast.literal_eval,
help='whether to frontalize vertices(mesh)')
# update in 2017/4/25
parser.add_argument('--isDepth', default=False, type=ast.literal_eval,
help='whether to output depth image')
# update in 2017/4/27
parser.add_argument('--isTexture', default=False, type=ast.literal_eval,
help='whether to save texture in obj file')
parser.add_argument('--isMask', default=False, type=ast.literal_eval,
help='whether to set invisible pixels(due to self-occlusion) in texture as 0')
# update in 2017/7/19
parser.add_argument('--texture_size', default=256, type=int,
help='size of texture map, default is 256. need isTexture is True')
main(parser.parse_args())
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/wftdly001/PRNet.git
git@gitee.com:wftdly001/PRNet.git
wftdly001
PRNet
PRNet
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385