5 Star 1 Fork 1

wenjingyuer/Object detection in video

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
efficientdet_test.py 5.04 KB
一键复制 编辑 原始数据 按行查看 历史
WuMoe 提交于 2021-03-05 15:39 . test file
# Author: Zylo117
"""
Simple Inference Script of EfficientDet-Pytorch
"""
import time
import torch
from torch.backends import cudnn
from matplotlib import colors
from backbone import EfficientDetBackbone
import cv2
import numpy as np
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess, STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
compound_coef = 0
force_input_size = None # set None to use default size
#img_path = 'test/img.png'
img_path = 'test/wallhaven-48k7l1.jpg'
# replace this part with your project's anchor config
anchor_ratios = [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]
anchor_scales = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]
threshold = 0.2
iou_threshold = 0.2
use_cuda = True
use_float16 = False
cudnn.fastest = True
cudnn.benchmark = True
obj_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', '', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', '', 'backpack', 'umbrella', '', '', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', '', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', '', 'dining table', '', '', 'toilet', '', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', '', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
'toothbrush']
color_list = standard_to_bgr(STANDARD_COLORS)
# tf bilinear interpolation is different from any other's, just make do
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
input_size = input_sizes[compound_coef] if force_input_size is None else force_input_size
ori_imgs, framed_imgs, framed_metas = preprocess(img_path, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list),
ratios=anchor_ratios, scales=anchor_scales)
model.load_state_dict(torch.load(f'weights/efficientdet-d{compound_coef}.pth', map_location='cpu'))
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
with torch.no_grad():
features, regression, classification, anchors = model(x)
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
def display(preds, imgs, imshow=True, imwrite=False):
for i in range(len(imgs)):
if len(preds[i]['rois']) == 0:
continue
imgs[i] = imgs[i].copy()
for j in range(len(preds[i]['rois'])):
x1, y1, x2, y2 = preds[i]['rois'][j].astype(np.int)
obj = obj_list[preds[i]['class_ids'][j]]
score = float(preds[i]['scores'][j])
plot_one_box(imgs[i], [x1, y1, x2, y2], label=obj,score=score,color=color_list[get_index_label(obj, obj_list)])
if imshow:
cv2.imshow('img', imgs[i])
cv2.waitKey(0)
if imwrite:
curr_time = time.strftime('%Y-%m-%d-%S',time.localtime(time.time()))
cv2.imwrite(f'test/processed_{curr_time}_this_repo_{i}.jpg', imgs[i])
out = invert_affine(framed_metas, out)
display(out, ori_imgs, imshow=False, imwrite=True)
# print('running speed test...')
# with torch.no_grad():
# print('test1: model inferring and postprocessing')
# print('inferring image for 10 times...')
# t1 = time.time()
# for _ in range(10):
# _, regression, classification, anchors = model(x)
# out = postprocess(x,
# anchors, regression, classification,
# regressBoxes, clipBoxes,
# threshold, iou_threshold)
# out = invert_affine(framed_metas, out)
# t2 = time.time()
# tact_time = (t2 - t1) / 10
# print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1')
# uncomment this if you want a extreme fps test
# print('test2: model inferring only')
# print('inferring images for batch_size 32 for 10 times...')
# t1 = time.time()
# x = torch.cat([x] * 32, 0)
# for _ in range(10):
# _, regression, classification, anchors = model(x)
#
# t2 = time.time()
# tact_time = (t2 - t1) / 10
# print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32')
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/wenjingyuer/object-detection-in-video.git
git@gitee.com:wenjingyuer/object-detection-in-video.git
wenjingyuer
object-detection-in-video
Object detection in video
master

搜索帮助