代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
"""
Created on 2019/8/4 上午9:53
@author: mick.yi
入口类
"""
import re
import os
import numpy as np
import torch
from torch import nn
from torchvision import models
import argparse
from skimage import io
import cv2
from interpretability.grad_cam import GradCAM, GradCamPlusPlus
from interpretability.guided_back_propagation import GuidedBackPropagation
def get_net(net_name, weight_path=None):
"""
根据网络名称获取模型
:param net_name: 网络名称
:param weight_path: 与训练权重路径
:return:
"""
pretrain = weight_path is None # 没有指定权重路径,则加载默认的预训练权重
if net_name in ['vgg', 'vgg16']:
net = models.vgg16(pretrained=pretrain)
elif net_name == 'vgg19':
net = models.vgg19(pretrained=pretrain)
elif net_name in ['resnet', 'resnet50']:
net = models.resnet50(pretrained=pretrain)
elif net_name == 'resnet101':
net = models.resnet101(pretrained=pretrain)
elif net_name in ['densenet', 'densenet121']:
net = models.densenet121(pretrained=pretrain)
elif net_name in ['inception']:
net = models.inception_v3(pretrained=pretrain)
elif net_name in ['mobilenet_v2']:
net = models.mobilenet_v2(pretrained=pretrain)
elif net_name in ['shufflenet_v2']:
net = models.shufflenet_v2_x1_0(pretrained=pretrain)
else:
raise ValueError('invalid network name:{}'.format(net_name))
# 加载指定路径的权重参数
if weight_path is not None and net_name.startswith('densenet'):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = torch.load(weight_path)
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
net.load_state_dict(state_dict)
elif weight_path is not None:
net.load_state_dict(torch.load(weight_path))
return net
def get_last_conv_name(net):
"""
获取网络的最后一个卷积层的名字
:param net:
:return:
"""
layer_name = None
for name, m in net.named_modules():
if isinstance(m, nn.Conv2d):
layer_name = name
return layer_name
def prepare_input(image):
image = image.copy()
# 归一化
means = np.array([0.485, 0.456, 0.406])
stds = np.array([0.229, 0.224, 0.225])
image -= means
image /= stds
image = np.ascontiguousarray(np.transpose(image, (2, 0, 1))) # channel first
image = image[np.newaxis, ...] # 增加batch维
return torch.tensor(image, requires_grad=True)
def gen_cam(image, mask):
"""
生成CAM图
:param image: [H,W,C],原始图像
:param mask: [H,W],范围0~1
:return: tuple(cam,heatmap)
"""
# mask转为heatmap
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
heatmap = heatmap[..., ::-1] # gbr to rgb
# 合并heatmap到原始图像
cam = heatmap + np.float32(image)
return norm_image(cam), heatmap
def norm_image(image):
"""
标准化图像
:param image: [H,W,C]
:return:
"""
image = image.copy()
image -= np.max(np.min(image), 0)
image /= np.max(image)
image *= 255.
return np.uint8(image)
def gen_gb(grad):
"""
生guided back propagation 输入图像的梯度
:param grad: tensor,[3,H,W]
:return:
"""
# 标准化
grad = grad.data.numpy()
gb = np.transpose(grad, (1, 2, 0))
return gb
def save_image(image_dicts, input_image_name, network, output_dir):
prefix = os.path.splitext(input_image_name)[0]
for key, image in image_dicts.items():
io.imsave(os.path.join(output_dir, '{}-{}-{}.jpg'.format(prefix, network, key)), image)
def main(args):
# 输入
img = io.imread(args.image_path)
img = np.float32(cv2.resize(img, (224, 224))) / 255
inputs = prepare_input(img)
# 输出图像
image_dict = {}
# 网络
net = get_net(args.network, args.weight_path)
# Grad-CAM
layer_name = get_last_conv_name(net) if args.layer_name is None else args.layer_name
grad_cam = GradCAM(net, layer_name)
mask = grad_cam(inputs, args.class_id) # cam mask
image_dict['cam'], image_dict['heatmap'] = gen_cam(img, mask)
grad_cam.remove_handlers()
# Grad-CAM++
grad_cam_plus_plus = GradCamPlusPlus(net, layer_name)
mask_plus_plus = grad_cam_plus_plus(inputs, args.class_id) # cam mask
image_dict['cam++'], image_dict['heatmap++'] = gen_cam(img, mask_plus_plus)
grad_cam_plus_plus.remove_handlers()
# GuidedBackPropagation
gbp = GuidedBackPropagation(net)
inputs.grad.zero_() # 梯度置零
grad = gbp(inputs)
gb = gen_gb(grad)
image_dict['gb'] = gb
# 生成Guided Grad-CAM
cam_gb = gb * mask[..., np.newaxis]
image_dict['cam_gb'] = norm_image(cam_gb)
save_image(image_dict, os.path.basename(args.image_path), args.network, args.output_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--network', type=str, default='resnet50',
help='ImageNet classification network')
parser.add_argument('--image-path', type=str, default='./examples/pic1.jpg',
help='input image path')
parser.add_argument('--weight-path', type=str, default=None,
help='weight path of the model')
parser.add_argument('--layer-name', type=str, default=None,
help='last convolutional layer name')
parser.add_argument('--class-id', type=int, default=None,
help='class id')
parser.add_argument('--output-dir', type=str, default='results',
help='output directory to save results')
arguments = parser.parse_args()
main(arguments)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。