1 Star 0 Fork 0

ZENGWatermelon/TrackPrediction

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
02sunzhaoc.py 4.91 KB
一键复制 编辑 原始数据 按行查看 历史
sunzhaoc 提交于 2020-11-30 21:37 . master
from sklearn.externals import joblib
import copy
# data = joblib.load("./data/01origin_data.pkl")
# temp = data.data.values.tolist()
#
# joblib.dump(temp, "./data/02origin_data_list.pkl")
# V = 1
# ----------------------------------------------------------------
# data = joblib.load("./data/03db_scan.pkl")
# temp = data.data.values.tolist()
# joblib.dump(temp, "./data/04db_scan_list.pkl")
# V = 1
# ----------------------------------------------------------------
# data = joblib.load("./data/04db_scan_list.pkl")
# dict = {}
# for i in range(len(data)):
# try:
# if data[i][2] not in dict[str(data[i][11])]:
# dict[str(data[i][11])].append(data[i][2])
# except KeyError:
# dict[str(data[i][11])] = [data[i][2]]
#
# joblib.dump(dict, "./data/05classify_dict.pkl")
# V = 1
# ----------------------------------------------------------------
# data = joblib.load("./data/02origin_data_list.pkl")
# dict = joblib.load("./data/05classify_dict02.pkl")
#
# for i in range(len(data)):
# data[i].append(dict[data[i][2]][0])
#
# joblib.dump(data, "./data/06data.pkl")
# V = 1
# ----------------------------------------------------------------
# data = joblib.load("./data/06data.pkl")
# temp = []
# for i in range(len(data)):
# if data[i][13] != -1:
# temp.append(data[i])
# joblib.dump(temp, "./data/07data_no-1.pkl")
# V = 1
# ----------------------------------------------------------------
# data = joblib.load("./data/07data_no-1.pkl")
#
# dict = {}
# for i in range(len(data)):
# try:
# dict[data[i][2]].append(data[i])
# except KeyError:
# dict[data[i][2]] = [data[i]]
#
# joblib.dump(dict, "./data/08data-dict.pkl")
# ----------------------------------------------------------------
# data = joblib.load("./data/08data-dict.pkl")
# clssify_dict = joblib.load("./data/05classify_dict.pkl")
# train_dict = {}
# test_dict = {}
# for i in clssify_dict:
# if i == "-1":
# continue
# test = clssify_dict[i][:len(clssify_dict[i])*2//10]
# train = clssify_dict[i][len(clssify_dict[i])*2//10:]
# for j in train:
# train_dict[j] = data[j]
# for j in test:
# test_dict[j] = data[j]
# # joblib.dump(train_dict, "./data/10train_data.pkl")
# # joblib.dump(test_dict, "./data/10test_data.pkl")
# V = 1
# # ----------------------------------------------------------------
# # data2 = joblib.load("./data/10train_data.pkl")
# data2 = joblib.load("./data/10test_data.pkl")
# for xx in (30, 40, 50, 60, 70, 80, 90, 100):
# data = copy.deepcopy(data2)
# n_sample = 15
#
# def Percent(dat_list, per):
# for i in dat_list:
# length = len(dat_list[i])
# dat_list[i] = dat_list[i][:int(length*per)]
# return dat_list
#
#
# def DownSample(data_list, n_sample):
# temp = []
# length = len(data_list)
# for i in range(n_sample):
# temp.append(data_list[(length * i) // n_sample])
# return temp
#
#
# def GuiOne(data_dict):
# for i in data_dict:
# max_x = max(data_dict[i])[11]
# max_y = max(data_dict[i])[12]
# max_angle = max(data_dict[i])[10]
# min_x = min(data_dict[i])[11]
# min_y = min(data_dict[i])[12]
# min_angle = min(data_dict[i])[10]
# for j in range(len(data_dict[i])):
# data_dict[i][j][11] = (data_dict[i][j][11] - min_x) / (max_x - min_x)
# data_dict[i][j][12] = (data_dict[i][j][12] - min_y) / (max_y - min_y)
# try:
# data_dict[i][j][10] = (data_dict[i][j][10] - min_angle) / (max_angle - min_angle)
# except ZeroDivisionError:
# A = data_dict[i]
# B = max(A)
# C = min(A)
# V = 1
# return data_dict
#
#
# data = Percent(data, xx/100)
#
# # data = GuiOne(data)
#
# dict = {}
# for i in data:
# dict[i]= DownSample(data[i], n_sample)
#
# joblib.dump(dict, "./data/11test_downsample" + str(xx) + ".pkl")
# # joblib.dump(dict, "./data/11train_downsample" + str(xx) + ".pkl")
# # joblib.dump(dict, "./data/11train_downsample_toone" + str(xx) + ".pkl")
# ----------------------------------------------------------------
for xx in (30, 40, 50, 60, 70, 80, 90, 100):
# dict = joblib.load("./data/11test_downsample" + str(xx) + ".pkl")
dict = joblib.load("./data/11train_downsample" + str(xx) + ".pkl")
svm_dict = {}
for i in range(20):
svm_dict[str(i)] = []
for i in dict:
id = dict[i][0][13]
svm_dict[str(id)].append([])
for j in range(len(dict[i])): # 15
svm_dict[str(id)][-1].append(dict[i][j][11])
svm_dict[str(id)][-1].append(dict[i][j][12])
svm_dict[str(id)][-1].append(dict[i][j][10])
# joblib.dump(svm_dict, "./data/12test"+ str(xx) +".pkl")
joblib.dump(svm_dict, "./data/12train"+ str(xx) +".pkl")
V = 1
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/watermelonTT/TrackPrediction.git
git@gitee.com:watermelonTT/TrackPrediction.git
watermelonTT
TrackPrediction
TrackPrediction
master

搜索帮助