代码拉取完成,页面将自动刷新
同步操作将从 ideaoverflow/Vehicle-Car-detection-and-multilabel-classification 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding: utf-8 -*-
import os
import sys
import re
import time
import pickle
import shutil
import random
import argparse
# from darknet_util import *
# from darknet import Darknet
# from preprocess import prep_image, process_img, inp_to_image
# import torch
# import torchvision
# import paramiko
# import cv2
import numpy as np
import PIL
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib.widgets import Cursor
from matplotlib.image import AxesImage
# from scipy.spatial.distance import cityblock
# from tqdm import tqdm
# 为了使用matplotlib正确显示中文
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
# use_cuda = True # True
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# device = torch.device(
# 'cuda: 0' if torch.cuda.is_available() and use_cuda else 'cpu')
# if use_cuda:
# torch.manual_seed(0)
# torch.cuda.manual_seed_all(0)
# print('=> device: ', device)
# 全局变量
# root = 'e:/pick_car_roi' # 测试数据路径
# model_path = 'e:/epoch_96.pth'
# attrib_path = 'e:/vehicle_attributes.pkl' # 属性文件路径
def letterbox_image(img, inp_dim):
'''
resize image with unchanged aspect ratio using padding
'''
img_w, img_h = img.shape[1], img.shape[0]
w, h = inp_dim
new_w = int(img_w * min(w / img_w, h / img_h))
new_h = int(img_h * min(w / img_w, h / img_h))
resized_image = cv2.resize(
img, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128)
canvas[(h - new_h) // 2:(h - new_h) // 2 + new_h, (w - new_w) //
2:(w - new_w) // 2 + new_w, :] = resized_image
return canvas
class Cropper(object):
"""
GUI交互, 通过鼠标键盘交互, 实现矩形抠图和拷贝
"""
def __init__(self,
root,
dst_dir,
is_resume=False):
"""
初始化资源
@param root: 原图所在目录路径
"""
object.__init__(self)
if not os.path.exists(root):
print('[Err]: empty src dir.')
return
if not os.path.isdir(dst_dir):
os.makedirs(dst_dir)
self.root = root
self.imgs_path = [os.path.join(self.root, x)
for x in os.listdir(self.root)]
self.dst_dir = dst_dir # 选取的ROI存放目录
self.ROI = None
self.clip_id = 0
# 加载断点
print('=> is resume: ', is_resume)
if is_resume == 1:
self.idx = pickle.load(open('clip_idx.pkl', 'rb'))
self.label_dict = pickle.load(open('label_dict.pkl', 'rb'))
print('=> resume from @%d, remain %d files to be classified.' %
(self.idx, len(self.imgs_path) - self.idx - 1))
elif is_resume == 0:
self.idx = 0 # 初始化序号
self.label_dict = {}
print('=> resume from @%d, remain %d files to be classified.' %
(self.idx, len(self.imgs_path)))
else:
print('=> [Err]: unrecognized flag.')
return
# 初始化车辆多标签分类管理器
# self.manager = Manager(model_path=model_path,
# attrib_path=attrib_path)
# 创建绘图
self.fig = plt.figure(figsize=(14.0, 8.0))
self.ax = self.fig.add_subplot(111)
# 为绘图添加鼠标和键盘callback
self.cid_scroll = self.fig.canvas.mpl_connect(
'scroll_event', self.on_scroll)
self.cid_btn_press = self.fig.canvas.mpl_connect(
'button_press_event', self.on_btn_press)
self.cid_btn_release = self.fig.canvas.mpl_connect(
'button_release_event', self.on_btn_release)
self.cid_mouse_move = self.fig.canvas.mpl_connect(
'motion_notify_event', self.on_mouse_motion)
self.cid_key_release = self.fig.canvas.mpl_connect(
'key_release_event', self.on_key_release)
# 初始化鼠标按键为False
self.is_btn_press = False
# 初始化鼠标点击次数为0
self.is_rect_ready = False
# 读取图像
try:
img_path = self.imgs_path[self.idx]
print(img_path)
except Exception as e:
print(e)
return
self.img = Image.open(img_path)
# 绘制光标定位
self.cursor = Cursor(self.ax,
useblit=True,
color='red',
linewidth=1)
# 初始化矩形框
self.init_rect()
# 绘制第一张图
ax_img = self.ax.imshow(self.img, picker=True)
self.ax.set_xticks([])
self.ax.set_yticks([])
plt.title(img_path)
plt.tight_layout()
plt.show()
self.fig.canvas.draw()
def init_rect(self):
"""
初始化矩形框
"""
self.is_btn_press = False
self.is_rect_ready = False
self.rect = Rectangle((0, 0), 1, 1,
edgecolor='b',
linewidth=1,
facecolor='none')
self.x_0, self.y_0, self.x_1, self.y_1 = 0, 0, 0, 0
self.ax.add_patch(self.rect)
def exit(self):
"""
退出处理
"""
# 关闭图像
self.ax.cla()
self.fig.clf()
plt.close()
# 保存断点
pickle.dump(self.idx, open('clip_idx.pkl', 'wb'))
pickle.dump(self.label_dict, open('label_dict.pkl', 'wb'))
print('=> save checkpoint idx @%d, and exit.' % self.idx)
def update_fig(self):
"""
更新绘图
"""
if self.idx < len(self.imgs_path):
# 释放上一帧缓存
self.ax.cla()
# 重绘一帧图像
self.img = Image.open(self.imgs_path[self.idx]) # 读取图像
ax_img = self.ax.imshow(self.img, picker=True)
self.ax.set_xticks([])
self.ax.set_yticks([])
plt.title(str(self.idx) + ': ' + self.imgs_path[self.idx])
plt.tight_layout()
# 重新初始化矩形框
self.init_rect()
self.fig.canvas.draw()
def draw_rect(self, event):
self.x_1 = event.xdata
self.y_1 = event.ydata
if self.x_1 > 0 and self.x_1 < self.img.width:
self.rect.set_width(self.x_1 - self.x_0)
self.rect.set_height(self.y_1 - self.y_0)
self.rect.set_xy((self.x_0, self.y_0))
self.fig.canvas.draw()
def on_scroll(self, event):
"""
鼠标滚动callback
"""
# 清空先前图像缓存
self.ax.cla()
if event.button == 'down' and event.step < -0.65: # 下一张图
# 更新图像数据
self.idx += 1
elif event.button == 'up' and event.step > 0.65: # 前一张图
if self.idx == 0: # 对于第一张图, 不存在前一张图
print('[Note]: idx 0 image has no previous image.')
return
self.idx -= 1
# 更新绘图
self.update_fig()
def on_btn_press(self, event):
"""
鼠标按下callback
"""
# print('=> mouse btn press')
self.x_0 = event.xdata
self.y_0 = event.ydata
self.is_btn_press = True
def on_btn_release(self, event):
"""
鼠标释放callback
"""
# print('=> mouse btn release')
if self.is_rect_ready: # 如果是奇数次按下鼠标: 恢复鼠标未被按下的状态
self.is_btn_press = False
x_start = int(self.rect.get_x())
x_end = int(self.rect.get_x() + self.rect.get_width())
y_start = int(self.rect.get_y())
y_end = int(self.rect.get_y() + self.rect.get_height())
if x_start < x_end and y_start < y_end:
self.ROI = Image.fromarray(
np.array(self.img)[y_start: y_end, x_start: x_end])
elif x_start > x_end and y_start > y_end:
self.ROI = Image.fromarray(
np.array(self.img)[y_end: y_start, x_end: x_start])
if None != self.ROI: # ROI是 PIL Image, 对ROI进行预测
# car_color, car_direction, car_type = self.manager.predict(
# self.ROI)
self.ROI.show()
# print('=> predict:', car_color, car_direction, car_type)
# 取反
self.is_rect_ready = not self.is_rect_ready
def on_mouse_motion(self, event):
"""
鼠标移动callback
"""
# print('=> mouse moving...')
if self.is_btn_press:
if None == event.xdata or None == event.ydata:
self.is_btn_press = False
return
self.draw_rect(event)
def on_key_release(self, event):
"""
键盘按键释放callback
"""
if event.key == 'c': # clip and save to destination dir
date_name = time.strftime(
'_%Y_%m_%d_', time.localtime(time.time()))
self.clip_id += 1
write_name = self.dst_dir + '/' + \
date_name + \
str(self.idx) + \
'_' + \
str(self.clip_id) + \
'.jpg'
self.ROI.save(write_name)
print('=> %s saved.' % write_name)
# label = input('=> Enter label string:') # 手动输入label
# self.label_dict[write_name.split('/')[-1]] = label
# print('=> label: ', label)
# 现在并不自动跳到下一帧
# self.idx += 1
# self.update_fig()
elif event.key == 'e': # 退出程序
self.exit()
self.is_btn_press = False
# -----------------------------------------------------------
# 网络模型
# class Net(torch.nn.Module):
# """
# power-set车辆多标签分类
# """
# def __init__(self, num_cls, input_size):
# """
# 网络定义
# :param is_freeze:
# """
# torch.nn.Module.__init__(self)
# # 输出通道数
# self._num_cls = num_cls
# # 输入图像尺寸
# self.input_size = input_size
# # 删除原有全连接, 得到特征提取层
# self.features = torchvision.models.resnet18(pretrained=True)
# del self.features.fc
# # print('feature extractor:\n', self.features)
# self.features = torch.nn.Sequential(
# *list(self.features.children()))
# # 重新定义全连接层
# self.fc = torch.nn.Linear(512 ** 2, num_cls) # 输出类别数
# # print('=> fc layer:\n', self.fc)
# def forward(self, X):
# """
# :param X:
# :return:
# """
# N = X.size()[0]
# X = self.features(X) # extract features
# X = X.view(N, 512, 1 ** 2)
# X = torch.bmm(X, torch.transpose(X, 1, 2)) / (1 ** 2) # Bi-linear
# X = X.view(N, 512 ** 2)
# X = torch.sqrt(X + 1e-5)
# X = torch.nn.functional.normalize(X)
# X = self.fc(X)
# assert X.size() == (N, self._num_cls) # 输出类别数
# return X
# 封装管理
# class Manager(object):
# """
# 模型初始化等
# """
# def __init__(self,
# model_path,
# attrib_path):
# """
# 加载模型并初始化
# """
# # 定义模型, 放入device, 加载权重
# self.net = Net(num_cls=23,
# input_size=224).to(device)
# # self.net = torch.nn.DataParallel(Net(num_cls=23, input_size=224),
# # device_ids=[0]).to(device)
# self.net.load_state_dict(torch.load(model_path))
# print('=> vehicle classifier loaded from %s' % model_path)
# # 设置模型为测试模式
# self.net.eval()
# # 测试数据预处理方式
# self.transforms = torchvision.transforms.Compose([
# torchvision.transforms.Resize(size=224),
# torchvision.transforms.CenterCrop(size=224),
# torchvision.transforms.ToTensor(),
# torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
# std=(0.229, 0.224, 0.225))
# ])
# # 加载attributes向量
# self.attributes = pickle.load(open(attrib_path, 'rb'))
# self.attributes = [str(x) for x in self.attributes]
# # print('=> training attributes:\n', attributes)
# # 将多标签分开
# self.color_attrs = self.attributes[:11]
# del self.color_attrs[5]
# print('=> color_attrs:\n', self.color_attrs)
# self.direction_attrs = self.attributes[11:14]
# del self.direction_attrs[2]
# print('=> direction attrs:\n', self.direction_attrs)
# self.type_attrs = self.attributes[14:]
# del self.type_attrs[6]
# print('=> type_attrs:\n', self.type_attrs)
# def get_predict_ce(self, output):
# """
# softmax归一化,然后统计每一个标签最大值索引
# :param output:
# :return:
# """
# # 计算预测值
# output = output.cpu() # 从GPU拷贝出到host端
# pred_color = output[:, :11]
# pred_direction = output[:, 11:14]
# pred_type = output[:, 14:]
# color_idx = pred_color.max(1, keepdim=True)[1]
# direction_idx = pred_direction.max(1, keepdim=True)[1]
# type_idx = pred_type.max(1, keepdim=True)[1]
# # 连接pred
# pred = torch.cat((color_idx, direction_idx, type_idx), dim=1)
# return pred
# def get_predict(self, output):
# """
# 新输出向量(20维)的处理
# """
# # 计算预测值
# output = output.cpu() # 从GPU拷贝出到host端
# pred_color = output[:, :10]
# pred_direction = output[:, 10:12]
# pred_type = output[:, 12:]
# color_idx = pred_color.max(1, keepdim=True)[1]
# direction_idx = pred_direction.max(1, keepdim=True)[1]
# type_idx = pred_type.max(1, keepdim=True)[1]
# # 连接pred
# pred = torch.cat((color_idx, direction_idx, type_idx), dim=1)
# return pred
# def pre_process(self, image):
# """
# 图像数据类型转换
# :rtype: PIL.JpegImagePlugin.JpegImageFile
# """
# # 数据预处理
# if type(image) == np.ndarray:
# if image.shape[2] == 3: # 3通道转换成RGB
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# elif image.shape[2] == 1: # 单通道, 灰度转换成RGB
# image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# # numpy.ndarray转换成PIL.Image
# image = Image.fromarray(image)
# elif type(image) == PIL.JpegImagePlugin.JpegImageFile:
# if image.mode == 'L' or image.mode == 'I': # 8bit或32bit单通道灰度图转换成RGB
# image = image.convert('RGB')
# return image
# def predict(self, img):
# """
# 预测属性: 输入图像通过PIL读入的
# :return:返回预测的车辆颜色、车辆朝向、车辆类别
# """
# # 数据预处理
# img = self.transforms(img)
# img = img.view(1, 3, 224, 224)
# # 图像数据放入device运行
# img = img.to(device)
# # 前向运算
# output = self.net.forward(img)
# # 获取预测结果
# try:
# pred = self.get_predict(output) # self.get_predict_ce, 返回的pred在host端
# color_name = self.color_attrs[pred[0][0]]
# direction_name = self.direction_attrs[pred[0][1]]
# type_name = self.type_attrs[pred[0][2]]
# except Exception as e:
# return None, None, None
# return color_name, direction_name, type_name
def test(is_pil=True):
"""
单元测试和可视化
:return:
"""
# 测试数据路径
root = 'e:/pick_car_roi'
model_path = 'e:/epoch_42.pth'
attrib_path = 'e:/vehicle_attributes.pkl'
# 模型初始化
manager = Manager(model_path=model_path, attrib_path=attrib_path)
for file in os.listdir(root):
# 读取测试数据
file_path = os.path.join(root, file)
if is_pil:
image = Image.open(file_path) # 通过PIL读取图像
else:
image = cv2.imread(file_path, cv2.IMREAD_UNCHANGED) # 通过opencv读取图像
# -------------------------------
# 图像数据格式预处理
image = manager.pre_process(image)
# 预测
car_color, car_direction, car_type = manager.predict(image)
# -------------------------------
# 可视化
fig = plt.figure(figsize=(6, 6))
plt.imshow(image)
plt.title(car_color + ' ' + car_direction + ' ' + car_type)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
plt.show()
class Car_DR():
def __init__(self,
src_dir,
dst_dir,
car_cfg_path='./car.cfg',
car_det_weights_path='g:/Car_DR/car_360000.weights',
inp_dim=768,
prob_th=0.2,
nms_th=0.4,
num_classes=1):
"""
模型初始化
"""
# 超参数
self.inp_dim = inp_dim
self.prob_th = prob_th
self.nms_th = nms_th
self.num_classes = num_classes
self.dst_dir = dst_dir
# 清空dst_dir
if os.path.exists(self.dst_dir):
for x in os.listdir(self.dst_dir):
if x.endswith('.jpg'):
os.remove(self.dst_dir + '/' + x)
else:
os.makedirs(self.dst_dir)
# 初始化车辆检测模型及参数
self.Net = Darknet(car_cfg_path)
self.Net.load_weights(car_det_weights_path)
self.Net.net_info['height'] = self.inp_dim # 车辆检测输入分辨率
self.Net.to(device)
self.Net.eval() # 测试模式
print('=> car detection model initiated.')
# 初始化车辆多标签分类管理器
self.manager = Manager(model_path=model_path, attrib_path=attrib_path)
# 统计src_dir文件
self.imgs_path = [os.path.join(src_dir, x) for x in os.listdir(
src_dir) if x.endswith('.jpg')]
def cls_draw_bbox(self, output, orig_img):
"""
orig_img是通过opencv读取的numpy array格式: 通道顺序BGR
在bbox基础上预测车辆属性
将bbox绘制到原图上
"""
labels = []
pt_1s = []
pt_2s = []
# 获取车辆属性labels
for det in output:
# rectangle points
pt_1 = tuple(det[1:3].int()) # the left-up point
pt_2 = tuple(det[3:5].int()) # the right down point
pt_1s.append(pt_1)
pt_2s.append(pt_2)
# 调用分类器预测车辆属性: BGR => RGB
ROI = Image.fromarray(
orig_img[pt_1[1]: pt_2[1],
pt_1[0]: pt_2[0]][:, :, ::-1])
# ROI.show()
car_color, car_direction, car_type = self.manager.predict(ROI)
label = str(car_color + ' ' + car_direction + ' ' + car_type)
labels.append(label)
print('=> predicted label: ', label)
# 将bbox绘制到原图
color = (0, 215, 255)
for i, det in enumerate(output):
pt_1 = pt_1s[i]
pt_2 = pt_2s[i]
# 绘制bounding box
cv2.rectangle(orig_img, pt_1, pt_2, color, thickness=2)
# 获取文本大小
txt_size = cv2.getTextSize(
label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] # 文字大小
# pt_2 = pt_1[0] + txt_size[0] + 3, pt_1[1] + txt_size[1] + 5
pt_2 = pt_1[0] + txt_size[0] + 3, pt_1[1] - txt_size[1] - 5
# 绘制文本底色矩形
cv2.rectangle(orig_img, pt_1, pt_2, color, thickness=-1) # text
# 绘制文本
cv2.putText(orig_img, labels[i], (pt_1[0], pt_1[1]), # pt_1[1] + txt_size[1] + 4
cv2.FONT_HERSHEY_PLAIN, 2, [225, 255, 255], 2)
def cls_and_draw(self, output, orig_img):
"""
orig_img是PIL Image图像格式
在bbox基础上预测车辆属性
将bbox绘制到原图上
"""
labels = []
x_ys = []
w_hs = []
# 获取车辆属性labels
for det in output:
# rectangle
x_y = tuple(det[1:3].int()) # x, y
w_h = tuple(det[3:5].int()) # w, h
x_ys.append(x_y)
w_hs.append(w_h)
# 调用分类器预测车辆属性: BGR => RGB
box = (int(x_y[0]), int(x_y[1]), int(x_y[0] + w_h[0]),
int(x_y[1] + w_h[1])) # left, upper, right, lower
ROI = orig_img.crop(box)
car_color, car_direction, car_type = self.manager.predict(ROI)
label = car_color + ' ' + car_direction + ' ' + car_type
print('=> label: ', label)
labels.append(label)
# 将bbox绘制到原图
for i, det in enumerate(output):
x_y = x_ys[i]
w_h = w_hs[i]
color = (0, 215, 255)
cv2.rectangle(np.asarray(orig_img), x_y, w_h, color,
thickness=2) # bounding box
txt_size = cv2.getTextSize(
label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] # 文字大小
w_h = x_y[0] + txt_size[0] + 4, x_y[1] + txt_size[1] + 4
cv2.rectangle(np.asarray(orig_img), x_y, w_h,
color, thickness=-1) # text
cv2.putText(np.asarray(orig_img), labels[i], (x_y[0], x_y[1] + txt_size[1] + 4),
cv2.FONT_HERSHEY_PLAIN, 2, [225, 255, 255], 2)
def predict(self):
"""
批量检测和识别, 将检测, 识别结果输出到dst_dir
"""
for x in self.imgs_path:
# 读取图像数据
img = Image.open(x)
img2det = process_img(img, self.inp_dim)
img2det = img2det.to(device) # 图像数据放到device
# 车辆检测
prediction = self.Net.forward(img2det, CUDA=True)
# 计算scaling factor
orig_img_size = list(img.size)
output = process_predict(prediction,
self.prob_th,
self.num_classes,
self.nms_th,
self.inp_dim,
orig_img_size)
orig_img = cv2.cvtColor(np.asarray(
img), cv2.COLOR_RGB2BGR) # RGB => BGR
if type(output) != int:
# 将检测框bbox绘制到原图上
# draw_car_bbox(output, orig_img)
self.cls_draw_bbox(output, orig_img)
# self.cls_and_draw(output, img)
dst_path = self.dst_dir + '/' + os.path.split(x)[1]
if not os.path.exists(dst_path):
cv2.imwrite(dst_path, orig_img)
# -----------------------------------------------------------
def test_car_detect(car_cfg_path='./car.cfg',
car_det_weights_path='g:/Car_DR/car_360000.weights'):
"""
imgs_path: 图像数据路径
"""
inp_dim = 768
prob_th = 0.2 # 车辆检测概率阈值
nms_th = 0.4 # NMS阈值
num_cls = 1 # 只检测车辆1类
# 初始化车辆检测模型及参数
Net = Darknet(car_cfg_path)
Net.load_weights(car_det_weights_path)
Net.net_info['height'] = inp_dim # 车辆检测输入分辨率
Net.to(device)
Net.eval() # 测试模式
print('=> car detection model initiated.')
# 读取图像数据
img = Image.open(
'f:/FaceRecognition_torch_0_4/imgs_21/det_2018_08_21_63_1.jpg')
img2det = process_img(img, inp_dim)
img2det = img2det.to(device) # 图像数据放到device
# 测试车辆检测
prediction = Net.forward(img2det, CUDA=True)
# 计算scaling factor
orig_img_size = list(img.size)
output = process_predict(prediction,
prob_th,
num_cls,
nms_th,
inp_dim,
orig_img_size)
orig_img = np.asarray(img)
if type(output) != int:
# 将检测框bbox绘制到原图上
draw_car_bbox(output, orig_img)
cv2.imshow('test', orig_img)
cv2.waitKey()
"""
# prep_ret = prep_image('f:/FaceRecognition_torch_0_4/imgs_21/det_2018_08_21_63_1.jpg',
# inp_dim) # 返回一个Tensor
# img2det = prep_ret[0].view(1, 3, inp_dim, inp_dim)
# Net.load_state_dict(torch.load('./car_detect_model.pth'))
"""
def draw_car_bbox(output, orig_img):
for det in output:
label = 'car' # 类型名称
prob = '{:.3f}'.format(det[5].cpu().numpy())
label += prob
x_y = tuple(det[1:3].int()) # x, y
w_h = tuple(det[3:5].int()) # w, h
color = (0, 215, 255)
cv2.rectangle(orig_img, x_y, w_h, color,
thickness=2) # bounding box
txt_size = cv2.getTextSize(
label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] # 文字大小
w_h = x_y[0] + txt_size[0] + 3, x_y[1] + txt_size[1] + 4
cv2.rectangle(orig_img, x_y, w_h, color, thickness=-1) # text
cv2.putText(orig_img, label, (x_y[0], x_y[1] + txt_size[1] + 4),
cv2.FONT_HERSHEY_PLAIN, 2, [225, 255, 255], 2)
def process_predict(prediction,
prob_th,
num_cls,
nms_th,
inp_dim,
orig_img_size):
"""
处理预测结果
"""
scaling_factor = min([inp_dim / float(x)
for x in orig_img_size]) # W, H缩放系数
output = post_process(prediction,
prob_th,
num_cls,
nms=True,
nms_conf=nms_th,
CUDA=True) # post-process such as nms
if type(output) != int:
output[:, [1, 3]] -= (inp_dim - scaling_factor *
orig_img_size[0]) / 2.0 # x, w
output[:, [2, 4]] -= (inp_dim - scaling_factor *
orig_img_size[1]) / 2.0 # y, h
output[:, 1:5] /= scaling_factor
for i in range(output.shape[0]):
output[i, [1, 3]] = torch.clamp(
output[i, [1, 3]], 0.0, orig_img_size[0])
output[i, [2, 4]] = torch.clamp(
output[i, [2, 4]], 0.0, orig_img_size[1])
return output
def test_equal(f_path_1, f_path_2):
"""
f_path_1: 第一个文件路径
f_path_2: 第二个文件路径
"""
arr_1 = np.load(f_path_1)['arr_0']
arr_2 = np.load(f_path_2)['arr_0']
# 判断两个数组是否逐元素相等
print('=> the two array is equal:', (arr_1 == arr_2).all())
# --------------------------------将clipper处理的数据合并回vehicle_train
def process_clipped(src_root, dst_root):
"""
将src_root中的数据按照label合并到dst_root对应子目录
"""
# 加载label_dict
# label_path = src_root + '/' + 'label_dict.pkl'
try:
label_dict = pickle.load(
open('f:/FaceRecognition_torch_0_4/label_dict.pkl', 'rb'))
# print(label_dict)
except Exception as e:
print(e)
# 遍历src_root
for x in os.listdir(src_root):
if x.endswith('.jpg'): # 只处理存在的jpg图
if x in label_dict.keys(): # 只处理存在key的数据
label = label_dict[x]
# print('=> key: %s, value: %s' % (x, label))
sub_dir_path = dst_root + '/' + label.replace(' ', '_')
# print(sub_dir_path)
# 如果src, dst文件存在才合并
if os.path.isdir(sub_dir_path):
src_path = src_root + '/' + x
if os.path.exists(src_path):
dst_path = sub_dir_path + '/' + x
if not os.path.exists(dst_path): # 如果已经存, 则不再拷贝
shutil.copy(src_path, sub_dir_path)
print('=> %s copied to %s' %
(src_path, sub_dir_path))
# ----------------------------
def viz_err(err_path, root='f:/'):
"""
可视化分类错误信息
"""
err_dict = pickle.load(open(err_path, 'rb'))
# print(err_dict)
fig = plt.figure() #
for k, v in err_dict.items():
img_path = root + k
if os.path.isfile(img_path):
img = Image.open(img_path)
plt.gcf().set_size_inches(8, 8)
plt.imshow(img)
plt.title(img_path + '\n' + v)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
plt.show()
if __name__ == '__main__':
# ---------------------------- Clip roi, labeling and copy
parser = argparse.ArgumentParser(description='Cropper parameters')
parser.add_argument('-src',
type=str,
dest='s',
default=u'f:/LPVehicleID_1/',
help='dir path of JPEGImages')
parser.add_argument('-dst',
type=str,
dest='d',
default=u'f:/LPVehicleID_pro/',
help='dir path of JPEGImages')
parser.add_argument('-folder',
type=str,
dest='f',
default=u'桂A66K53',
help='dir path of JPEGImages')
parser.add_argument('-r',
type=int,
default=0,
help='dir path of JPEGImages')
args = parser.parse_args()
cropper = Cropper(root=args.s + args.f,
dst_dir=args.d + args.f,
is_resume=args.r)
# process_clipped(src_root=u'f:/LPVehicleID_1/川A1D695',
# dst_root='f:/vehicle_train')
# ----------------------------
# test_car_detect()
# ---------------------------- Car detect and classify
# DR_model = Car_DR(src_dir='g:/car_0819',
# dst_dir='f:/test_result')
# DR_model.predict()
# ----------------------------
# test_equal('e:/prediction_1.npz', 'e:/prediction_2.npz'c)
# test()
# ----------------------------
# viz_err('g:/err_dict.pkl')
print('=> Test done.')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。