Fetch the repository succeeded.
"""
Mask R-CNN
Display and Visualization Functions.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""
import os
import random
import itertools
import colorsys
import numpy as np
from skimage.measure import find_contours
import matplotlib.pyplot as plt
if "DISPLAY" not in os.environ:
plt.switch_backend('agg')
import matplotlib.patches as patches
import matplotlib.lines as lines
from matplotlib.patches import Polygon
import utils
############################################################
# Visualization
############################################################
def display_images(images, titles=None, cols=4, cmap=None, norm=None,
interpolation=None):
"""Display the given set of images, optionally with titles.
images: list or array of image tensors in HWC format.
titles: optional. A list of titles to display with each image.
cols: number of images per row
cmap: Optional. Color map to use. For example, "Blues".
norm: Optional. A Normalize instance to map values to colors.
interpolation: Optional. Image interporlation to use for display.
"""
titles = titles if titles is not None else [""] * len(images)
rows = len(images) // cols + 1
plt.figure(figsize=(14, 14 * rows // cols))
i = 1
for image, title in zip(images, titles):
plt.subplot(rows, cols, i)
plt.title(title, fontsize=9)
plt.axis('off')
plt.imshow(image.astype(np.uint8), cmap=cmap,
norm=norm, interpolation=interpolation)
i += 1
plt.show()
def random_colors(N, bright=True):
"""
Generate random colors.
To get visually distinct colors, generate them in HSV space then
convert to RGB.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
def apply_mask(image, mask, color, alpha=0.5):
"""Apply the given mask to the image.
"""
for c in range(3):
image[:, :, c] = np.where(mask == 1,
image[:, :, c] *
(1 - alpha) + alpha * color[c] * 255,
image[:, :, c])
return image
def display_instances(image, boxes, masks, class_ids, class_names,
scores=None, title="",
figsize=(16, 16), ax=None):
"""
boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
masks: [height, width, num_instances]
class_ids: [num_instances]
class_names: list of class names of the dataset
scores: (optional) confidence scores for each box
figsize: (optional) the size of the image.
"""
# Number of instances
N = boxes.shape[0]
if not N:
print("\n*** No instances to display *** \n")
else:
assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
if not ax:
_, ax = plt.subplots(1, figsize=figsize)
# Generate random colors
colors = random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
ax.set_ylim(height + 10, -10)
ax.set_xlim(-10, width + 10)
ax.axis('off')
ax.set_title(title)
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
# Bounding box
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in image cropping.
continue
y1, x1, y2, x2 = boxes[i]
p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
alpha=0.7, linestyle="dashed",
edgecolor=color, facecolor='none')
ax.add_patch(p)
# Label
class_id = class_ids[i]
score = scores[i] if scores is not None else None
label = class_names[class_id]
x = random.randint(x1, (x1 + x2) // 2)
caption = "{} {:.3f}".format(label, score) if score else label
ax.text(x1, y1 + 8, caption,
color='w', size=11, backgroundcolor="none")
# Mask
mask = masks[:, :, i]
masked_image = apply_mask(masked_image, mask, color)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8))
plt.show()
def draw_rois(image, rois, refined_rois, mask, class_ids, class_names, limit=10):
"""
anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates.
proposals: [n, 4] the same anchors but refined to fit objects better.
"""
masked_image = image.copy()
# Pick random anchors in case there are too many.
ids = np.arange(rois.shape[0], dtype=np.int32)
ids = np.random.choice(
ids, limit, replace=False) if ids.shape[0] > limit else ids
fig, ax = plt.subplots(1, figsize=(12, 12))
if rois.shape[0] > limit:
plt.title("Showing {} random ROIs out of {}".format(
len(ids), rois.shape[0]))
else:
plt.title("{} ROIs".format(len(ids)))
# Show area outside image boundaries.
ax.set_ylim(image.shape[0] + 20, -20)
ax.set_xlim(-50, image.shape[1] + 20)
ax.axis('off')
for i, id in enumerate(ids):
color = np.random.rand(3)
class_id = class_ids[id]
# ROI
y1, x1, y2, x2 = rois[id]
p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
edgecolor=color if class_id else "gray",
facecolor='none', linestyle="dashed")
ax.add_patch(p)
# Refined ROI
if class_id:
ry1, rx1, ry2, rx2 = refined_rois[id]
p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2,
edgecolor=color, facecolor='none')
ax.add_patch(p)
# Connect the top-left corners of the anchor and proposal for easy visualization
ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))
# Label
label = class_names[class_id]
ax.text(rx1, ry1 + 8, "{}".format(label),
color='w', size=11, backgroundcolor="none")
# Mask
m = utils.unmold_mask(mask[id], rois[id]
[:4].astype(np.int32), image.shape)
masked_image = apply_mask(masked_image, m, color)
ax.imshow(masked_image)
# Print stats
print("Positive ROIs: ", class_ids[class_ids > 0].shape[0])
print("Negative ROIs: ", class_ids[class_ids == 0].shape[0])
print("Positive Ratio: {:.2f}".format(
class_ids[class_ids > 0].shape[0] / class_ids.shape[0]))
# TODO: Replace with matplotlib equivalent?
def draw_box(image, box, color):
"""Draw 3-pixel width bounding boxes on the given image array.
color: list of 3 int values for RGB.
"""
y1, x1, y2, x2 = box
image[y1:y1 + 2, x1:x2] = color
image[y2:y2 + 2, x1:x2] = color
image[y1:y2, x1:x1 + 2] = color
image[y1:y2, x2:x2 + 2] = color
return image
def display_top_masks(image, mask, class_ids, class_names, limit=4):
"""Display the given image and the top few class masks."""
to_display = []
titles = []
to_display.append(image)
titles.append("H x W={}x{}".format(image.shape[0], image.shape[1]))
# Pick top prominent classes in this image
unique_class_ids = np.unique(class_ids)
mask_area = [np.sum(mask[:, :, np.where(class_ids == i)[0]])
for i in unique_class_ids]
top_ids = [v[0] for v in sorted(zip(unique_class_ids, mask_area),
key=lambda r: r[1], reverse=True) if v[1] > 0]
# Generate images and titles
for i in range(limit):
class_id = top_ids[i] if i < len(top_ids) else -1
# Pull masks of instances belonging to the same class.
m = mask[:, :, np.where(class_ids == class_id)[0]]
m = np.sum(m * np.arange(1, m.shape[-1] + 1), -1)
to_display.append(m)
titles.append(class_names[class_id] if class_id != -1 else "-")
display_images(to_display, titles=titles, cols=limit + 1, cmap="Blues_r")
def plot_precision_recall(AP, precisions, recalls):
"""Draw the precision-recall curve.
AP: Average precision at IoU >= 0.5
precisions: list of precision values
recalls: list of recall values
"""
# Plot the Precision-Recall curve
_, ax = plt.subplots(1)
ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP))
ax.set_ylim(0, 1.1)
ax.set_xlim(0, 1.1)
_ = ax.plot(recalls, precisions)
def plot_overlaps(gt_class_ids, pred_class_ids, pred_scores,
overlaps, class_names, threshold=0.5):
"""Draw a grid showing how ground truth objects are classified.
gt_class_ids: [N] int. Ground truth class IDs
pred_class_id: [N] int. Predicted class IDs
pred_scores: [N] float. The probability scores of predicted classes
overlaps: [pred_boxes, gt_boxes] IoU overlaps of predictins and GT boxes.
class_names: list of all class names in the dataset
threshold: Float. The prediction probability required to predict a class
"""
gt_class_ids = gt_class_ids[gt_class_ids != 0]
pred_class_ids = pred_class_ids[pred_class_ids != 0]
plt.figure(figsize=(12, 10))
plt.imshow(overlaps, interpolation='nearest', cmap=plt.cm.Blues)
plt.yticks(np.arange(len(pred_class_ids)),
["{} ({:.2f})".format(class_names[int(id)], pred_scores[i])
for i, id in enumerate(pred_class_ids)])
plt.xticks(np.arange(len(gt_class_ids)),
[class_names[int(id)] for id in gt_class_ids], rotation=90)
thresh = overlaps.max() / 2.
for i, j in itertools.product(range(overlaps.shape[0]),
range(overlaps.shape[1])):
text = ""
if overlaps[i, j] > threshold:
text = "match" if gt_class_ids[j] == pred_class_ids[i] else "wrong"
color = ("white" if overlaps[i, j] > thresh
else "black" if overlaps[i, j] > 0
else "grey")
plt.text(j, i, "{:.3f}\n{}".format(overlaps[i, j], text),
horizontalalignment="center", verticalalignment="center",
fontsize=9, color=color)
plt.tight_layout()
plt.xlabel("Ground Truth")
plt.ylabel("Predictions")
def draw_boxes(image, boxes=None, refined_boxes=None,
masks=None, captions=None, visibilities=None,
title="", ax=None):
"""Draw bounding boxes and segmentation masks with differnt
customizations.
boxes: [N, (y1, x1, y2, x2, class_id)] in image coordinates.
refined_boxes: Like boxes, but draw with solid lines to show
that they're the result of refining 'boxes'.
masks: [N, height, width]
captions: List of N titles to display on each box
visibilities: (optional) List of values of 0, 1, or 2. Determine how
prominant each bounding box should be.
title: An optional title to show over the image
ax: (optional) Matplotlib axis to draw on.
"""
# Number of boxes
assert boxes is not None or refined_boxes is not None
N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0]
# Matplotlib Axis
if not ax:
_, ax = plt.subplots(1, figsize=(12, 12))
# Generate random colors
colors = random_colors(N)
# Show area outside image boundaries.
margin = image.shape[0] // 10
ax.set_ylim(image.shape[0] + margin, -margin)
ax.set_xlim(-margin, image.shape[1] + margin)
ax.axis('off')
ax.set_title(title)
masked_image = image.astype(np.uint32).copy()
for i in range(N):
# Box visibility
visibility = visibilities[i] if visibilities is not None else 1
if visibility == 0:
color = "gray"
style = "dotted"
alpha = 0.5
elif visibility == 1:
color = colors[i]
style = "dotted"
alpha = 1
elif visibility == 2:
color = colors[i]
style = "solid"
alpha = 1
# Boxes
if boxes is not None:
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in cropping.
continue
y1, x1, y2, x2 = boxes[i]
p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
alpha=alpha, linestyle=style,
edgecolor=color, facecolor='none')
ax.add_patch(p)
# Refined boxes
if refined_boxes is not None and visibility > 0:
ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32)
p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2,
edgecolor=color, facecolor='none')
ax.add_patch(p)
# Connect the top-left corners of the anchor and proposal
if boxes is not None:
ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))
# Captions
if captions is not None:
caption = captions[i]
# If there are refined boxes, display captions on them
if refined_boxes is not None:
y1, x1, y2, x2 = ry1, rx1, ry2, rx2
x = random.randint(x1, (x1 + x2) // 2)
ax.text(x1, y1, caption, size=11, verticalalignment='top',
color='w', backgroundcolor="none",
bbox={'facecolor': color, 'alpha': 0.5,
'pad': 2, 'edgecolor': 'none'})
# Masks
if masks is not None:
mask = masks[:, :, i]
masked_image = apply_mask(masked_image, mask, color)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8))
def plot_loss(loss, val_loss, save=True, log_dir=None):
loss = np.array(loss)
val_loss = np.array(val_loss)
plt.figure("loss")
plt.gcf().clear()
plt.plot(loss[:, 0], label='train')
plt.plot(val_loss[:, 0], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
plt.figure("rpn_class_loss")
plt.gcf().clear()
plt.plot(loss[:, 1], label='train')
plt.plot(val_loss[:, 1], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "rpn_class_loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
plt.figure("rpn_bbox_loss")
plt.gcf().clear()
plt.plot(loss[:, 2], label='train')
plt.plot(val_loss[:, 2], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "rpn_bbox_loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
plt.figure("mrcnn_class_loss")
plt.gcf().clear()
plt.plot(loss[:, 3], label='train')
plt.plot(val_loss[:, 3], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "mrcnn_class_loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
plt.figure("mrcnn_bbox_loss")
plt.gcf().clear()
plt.plot(loss[:, 4], label='train')
plt.plot(val_loss[:, 4], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "mrcnn_bbox_loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
plt.figure("mrcnn_mask_loss")
plt.gcf().clear()
plt.plot(loss[:, 5], label='train')
plt.plot(val_loss[:, 5], label='valid')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
if save:
save_path = os.path.join(log_dir, "mrcnn_mask_loss.png")
plt.savefig(save_path)
else:
plt.show(block=False)
plt.pause(0.1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。