1 Star 0 Fork 488

Tixuan/ML-AndrewNg-Notes

forked from scruel/Notes-ML-AndrewNg 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
week3.html 739.64 KB
一键复制 编辑 原始数据 按行查看 历史
scruel 提交于 2021-02-01 12:04 . optimize math block
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>week3</title><link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; --title-bar-height:20px; }
.mac-os-11 { --title-bar-height:28px; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; tab-size: 4; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; overflow-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 36px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
.typora-export .task-list-item input { pointer-events: none; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror-linenumber { user-select: none; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li blockquote { margin: 1rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
.typora-export #write { break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
.MathJax_ref { fill: currentcolor; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: hidden; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none 0s ease 0s; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; margin-top: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
mark { background: rgb(255, 255, 0); color: rgb(0, 0, 0); }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
mark .md-meta { color: rgb(0, 0, 0); opacity: 0.3 !important; }
@media print {
.typora-export h1, .typora-export h2, .typora-export h3, .typora-export h4, .typora-export h5, .typora-export h6 { break-inside: avoid; }
}
.md-diagram-panel .messageText { stroke: none !important; }
.md-diagram-panel .start-state { fill: var(--node-fill); }
.md-diagram-panel .edgeLabel rect { opacity: 1 !important; }
.md-require-zoom-fix foreignobject { font-size: var(--mermaid-font-zoom); }
.CodeMirror { height: auto; }
.CodeMirror.cm-s-inner { background: inherit; }
.CodeMirror-scroll { overflow: auto hidden; z-index: 3; }
.CodeMirror-gutter-filler, .CodeMirror-scrollbar-filler { background-color: rgb(255, 255, 255); }
.CodeMirror-gutters { border-right: 1px solid rgb(221, 221, 221); background: inherit; white-space: nowrap; }
.CodeMirror-linenumber { padding: 0px 3px 0px 5px; text-align: right; color: rgb(153, 153, 153); }
.cm-s-inner .cm-keyword { color: rgb(119, 0, 136); }
.cm-s-inner .cm-atom, .cm-s-inner.cm-atom { color: rgb(34, 17, 153); }
.cm-s-inner .cm-number { color: rgb(17, 102, 68); }
.cm-s-inner .cm-def { color: rgb(0, 0, 255); }
.cm-s-inner .cm-variable { color: rgb(0, 0, 0); }
.cm-s-inner .cm-variable-2 { color: rgb(0, 85, 170); }
.cm-s-inner .cm-variable-3 { color: rgb(0, 136, 85); }
.cm-s-inner .cm-string { color: rgb(170, 17, 17); }
.cm-s-inner .cm-property { color: rgb(0, 0, 0); }
.cm-s-inner .cm-operator { color: rgb(152, 26, 26); }
.cm-s-inner .cm-comment, .cm-s-inner.cm-comment { color: rgb(170, 85, 0); }
.cm-s-inner .cm-string-2 { color: rgb(255, 85, 0); }
.cm-s-inner .cm-meta { color: rgb(85, 85, 85); }
.cm-s-inner .cm-qualifier { color: rgb(85, 85, 85); }
.cm-s-inner .cm-builtin { color: rgb(51, 0, 170); }
.cm-s-inner .cm-bracket { color: rgb(153, 153, 119); }
.cm-s-inner .cm-tag { color: rgb(17, 119, 0); }
.cm-s-inner .cm-attribute { color: rgb(0, 0, 204); }
.cm-s-inner .cm-header, .cm-s-inner.cm-header { color: rgb(0, 0, 255); }
.cm-s-inner .cm-quote, .cm-s-inner.cm-quote { color: rgb(0, 153, 0); }
.cm-s-inner .cm-hr, .cm-s-inner.cm-hr { color: rgb(153, 153, 153); }
.cm-s-inner .cm-link, .cm-s-inner.cm-link { color: rgb(0, 0, 204); }
.cm-negative { color: rgb(221, 68, 68); }
.cm-positive { color: rgb(34, 153, 34); }
.cm-header, .cm-strong { font-weight: 700; }
.cm-del { text-decoration: line-through; }
.cm-em { font-style: italic; }
.cm-link { text-decoration: underline; }
.cm-error { color: red; }
.cm-invalidchar { color: red; }
.cm-constant { color: rgb(38, 139, 210); }
.cm-defined { color: rgb(181, 137, 0); }
div.CodeMirror span.CodeMirror-matchingbracket { color: rgb(0, 255, 0); }
div.CodeMirror span.CodeMirror-nonmatchingbracket { color: rgb(255, 34, 34); }
.cm-s-inner .CodeMirror-activeline-background { background: inherit; }
.CodeMirror { position: relative; overflow: hidden; }
.CodeMirror-scroll { height: 100%; outline: 0px; position: relative; box-sizing: content-box; background: inherit; }
.CodeMirror-sizer { position: relative; }
.CodeMirror-gutter-filler, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-vscrollbar { position: absolute; z-index: 6; display: none; }
.CodeMirror-vscrollbar { right: 0px; top: 0px; overflow: hidden; }
.CodeMirror-hscrollbar { bottom: 0px; left: 0px; overflow: hidden; }
.CodeMirror-scrollbar-filler { right: 0px; bottom: 0px; }
.CodeMirror-gutter-filler { left: 0px; bottom: 0px; }
.CodeMirror-gutters { position: absolute; left: 0px; top: 0px; padding-bottom: 30px; z-index: 3; }
.CodeMirror-gutter { white-space: normal; height: 100%; box-sizing: content-box; padding-bottom: 30px; margin-bottom: -32px; display: inline-block; }
.CodeMirror-gutter-wrapper { position: absolute; z-index: 4; background: 0px 0px !important; border: none !important; }
.CodeMirror-gutter-background { position: absolute; top: 0px; bottom: 0px; z-index: 4; }
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
.CodeMirror-lines { cursor: text; }
.CodeMirror pre { border-radius: 0px; border-width: 0px; background: 0px 0px; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; overflow-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; }
.CodeMirror-wrap pre { overflow-wrap: break-word; white-space: pre-wrap; word-break: normal; }
.CodeMirror-code pre { border-right: 30px solid transparent; width: fit-content; }
.CodeMirror-wrap .CodeMirror-code pre { border-right: none; width: auto; }
.CodeMirror-linebackground { position: absolute; left: 0px; right: 0px; top: 0px; bottom: 0px; z-index: 0; }
.CodeMirror-linewidget { position: relative; z-index: 2; overflow: auto; }
.CodeMirror-wrap .CodeMirror-scroll { overflow-x: hidden; }
.CodeMirror-measure { position: absolute; width: 100%; height: 0px; overflow: hidden; visibility: hidden; }
.CodeMirror-measure pre { position: static; }
.CodeMirror div.CodeMirror-cursor { position: absolute; visibility: hidden; border-right: none; width: 0px; }
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
.CodeMirror-focused div.CodeMirror-cursor { visibility: inherit; }
.cm-searching { background: rgba(255, 255, 0, 0.4); }
@media print {
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
}
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
/*@media print {
.typora-export h1,
.typora-export h2 {
border-bottom: none;
padding-bottom: initial;
}
.typora-export h1::after,
.typora-export h2::after {
content: "";
display: block;
height: 100px;
margin-top: -96px;
border-top: 1px solid #eee;
}
}*/
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border-top: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table th:first-child,
table td:first-child {
margin-top: 0;
}
table th:last-child,
table td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
table,
pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
.html-for-mac .context-menu {
--item-hover-bg-color: #E6F0FE;
}
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
</style>
</head>
<body class='typora-export os-windows'>
<div id='write' class=''><div class='md-toc' mdtype='toc'><p class="md-toc-content" role="list"><span role="listitem" class="md-toc-item md-toc-h1" data-ref="n2"><a class="md-toc-inner" href="#6-逻辑回归logistic-regression">6 逻辑回归(Logistic Regression)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n3"><a class="md-toc-inner" href="#61-分类classification">6.1 分类(Classification)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n24"><a class="md-toc-inner" href="#62-假设函数表示hypothesis-representation">6.2 假设函数表示(Hypothesis Representation)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n37"><a class="md-toc-inner" href="#63-决策边界decision-boundary">6.3 决策边界(Decision Boundary)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n61"><a class="md-toc-inner" href="#64-代价函数cost-function">6.4 代价函数(Cost Function)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n76"><a class="md-toc-inner" href="#65-简化的成本函数和梯度下降simplified-cost-function-and-gradient-descent">6.5 简化的成本函数和梯度下降(Simplified Cost Function and Gradient Descent)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n102"><a class="md-toc-inner" href="#66-进阶优化advanced-optimization">6.6 进阶优化(Advanced Optimization)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n147"><a class="md-toc-inner" href="#67-多类别分类-一对多multiclass-classification-one-vs-all">6.7 多类别分类: 一对多(Multiclass Classification: One-vs-all)</a></span><span role="listitem" class="md-toc-item md-toc-h1" data-ref="n157"><a class="md-toc-inner" href="#7-正则化regularization">7 正则化(Regularization)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n158"><a class="md-toc-inner" href="#71-过拟合问题the-problem-of-overfitting">7.1 过拟合问题(The Problem of Overfitting)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n204"><a class="md-toc-inner" href="#72-代价函数cost-function">7.2 代价函数(Cost Function)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n241"><a class="md-toc-inner" href="#73-线性回归正则化regularized-linear-regression">7.3 线性回归正则化(Regularized Linear Regression)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n260"><a class="md-toc-inner" href="#74-逻辑回归正则化regularized-logistic-regression">7.4 逻辑回归正则化(Regularized Logistic Regression)</a></span></p></div><h1><a name="6-逻辑回归logistic-regression" class="md-header-anchor"></a><span>6 逻辑回归(Logistic Regression)</span></h1><h2><a name="61-分类classification" class="md-header-anchor"></a><span>6.1 分类(Classification)</span></h2><p><span>在分类问题中,预测的结果是离散值(结果是否属于某一类),逻辑回归算法(Logistic Regression)被用于解决这类分类问题。</span></p><ul><li><span>垃圾邮件判断</span></li><li><span>金融欺诈判断</span></li><li><span>肿瘤诊断</span></li></ul><p><span>讨论肿瘤诊断问题:</span></p><p><img src="images/20180109_144040.png" referrerpolicy="no-referrer"></p><p><span>肿瘤诊断问题的目的是告诉病人</span><strong><span>是否</span></strong><span>为恶性肿瘤,是一个</span><strong><span>二元分类问题(binary class problems)</span></strong><span>,则定义 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.672ex" height="2.577ex" viewBox="0 -806.1 4164.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E176-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E176-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E176-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E176-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E176-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E176-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E176-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E176-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E176-MJMAIN-2208" x="774" y="0"></use><use xlink:href="#E176-MJMAIN-7B" x="1719" y="0"></use><use xlink:href="#E176-MJMAIN-30" x="2219" y="0"></use><use xlink:href="#E176-MJMAIN-2C" x="2719" y="0"></use><use xlink:href="#E176-MJMAIN-31" x="3164" y="0"></use><use xlink:href="#E176-MJMAIN-7D" x="3664" y="0"></use></g></svg></span><script type="math/tex"> y \in\lbrace 0, 1\rbrace</script><span>,其中 0 表示</span><strong><span>负向类(negative class)</span></strong><span>,代表恶性肿瘤(&quot;-&quot;),1 为</span><strong><span>正向类(positive class)</span></strong><span>,代表良性肿瘤(&quot;+&quot;)。如图,定义最右边的样本为</span><strong><span>偏差项</span></strong><span>。</span></p><p><span>在未加入偏差项时,线性回归算法给出了品红色的拟合直线,若规定</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.541ex" height="2.577ex" viewBox="0 -806.1 4969.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E177-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E177-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E177-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E177-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E177-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E177-MJAMS-2A7E" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM674 172Q692 172 694 154Q694 142 687 137Q685 135 395 -2L107 -138H101Q83 -136 83 -118Q83 -106 96 -100Q100 -98 380 35T665 170T674 172Z"></path><path stroke-width="0" id="E177-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E177-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E177-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E177-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E177-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E177-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E177-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E177-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E177-MJAMS-2A7E" x="2635" y="0"></use><g transform="translate(3691,0)"><use xlink:href="#E177-MJMAIN-30"></use><use xlink:href="#E177-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E177-MJMAIN-35" x="778" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta(x) \geqslant 0.5</script><span> ,预测为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E222-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E222-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E222-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E222-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E222-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E222-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y = 1</script><span>,即正向类;</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.541ex" height="2.577ex" viewBox="0 -806.1 4969.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E179-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E179-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E179-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E179-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E179-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E179-MJMAIN-3C" d="M694 -11T694 -19T688 -33T678 -40Q671 -40 524 29T234 166L90 235Q83 240 83 250Q83 261 91 266Q664 540 678 540Q681 540 687 534T694 519T687 505Q686 504 417 376L151 250L417 124Q686 -4 687 -5Q694 -11 694 -19Z"></path><path stroke-width="0" id="E179-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E179-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E179-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E179-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E179-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E179-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E179-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E179-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E179-MJMAIN-3C" x="2635" y="0"></use><g transform="translate(3691,0)"><use xlink:href="#E179-MJMAIN-30"></use><use xlink:href="#E179-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E179-MJMAIN-35" x="778" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta(x) \lt 0.5</script><span> ,预测为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E221-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E221-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E221-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E221-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E221-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E221-MJMAIN-30" x="1830" y="0"></use></g></svg></span><script type="math/tex">y = 0</script><span>,即负向类。</span></p><p><span>即以 0.5 为</span><strong><span>阈值</span></strong><span>(threshold),则我们就可以根据线性回归结果,得到相对正确的分类结果 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.154ex" height="1.877ex" viewBox="0 -504.6 497 808.1" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E32-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E32-MJMATHI-79" x="0" y="0"></use></g></svg></span><script type="math/tex">y</script><span>。</span></p><p>&nbsp;</p><p><span>接下来加入偏差项,线性回归算法给出了靛青色的拟合直线,如果阈值仍然为 0.5,可以看到算法在某些情况下会给出完全错误的结果,对于癌症、肿瘤诊断这类要求预测极其精确的问题,这种情况是无法容忍的。</span></p><p><span>不仅如此,线性回归算法的值域为全体实数集(</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.078ex" height="2.577ex" viewBox="0 -806.1 4339.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E181-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E181-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E181-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E181-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E181-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E181-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E181-MJMATHI-52" d="M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E181-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E181-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E181-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E181-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E181-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E181-MJMAIN-2208" x="2635" y="0"></use><use xlink:href="#E181-MJMATHI-52" x="3580" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x) \in R</script><span>),则当线性回归函数给出诸如 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="31.599ex" height="2.577ex" viewBox="0 -806.1 13605 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E182-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E182-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E182-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E182-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E182-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E182-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E182-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E182-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E182-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E182-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E182-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E182-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E182-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E182-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E182-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E182-MJMAIN-3D" x="2635" y="0"></use><g transform="translate(3691,0)"><use xlink:href="#E182-MJMAIN-31"></use><use xlink:href="#E182-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="1500" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="2000" y="0"></use></g><use xlink:href="#E182-MJMAIN-2C" x="6191" y="0"></use><g transform="translate(6635,0)"><use xlink:href="#E182-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E182-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E182-MJMAIN-28" x="7643" y="0"></use><use xlink:href="#E182-MJMATHI-78" x="8032" y="0"></use><use xlink:href="#E182-MJMAIN-29" x="8604" y="0"></use><use xlink:href="#E182-MJMAIN-3D" x="9271" y="0"></use><use xlink:href="#E182-MJMAIN-2212" x="10327" y="0"></use><g transform="translate(11105,0)"><use xlink:href="#E182-MJMAIN-31"></use><use xlink:href="#E182-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="1500" y="0"></use><use xlink:href="#E182-MJMAIN-30" x="2000" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta(x) = 10000, h_\theta(x) = -10000</script><span> 等很大/很小(负数)的数值时,结果 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.672ex" height="2.577ex" viewBox="0 -806.1 4164.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E183-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E183-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E183-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E183-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E183-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E183-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E183-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E183-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E183-MJMAIN-2208" x="774" y="0"></use><use xlink:href="#E183-MJMAIN-7B" x="1719" y="0"></use><use xlink:href="#E183-MJMAIN-30" x="2219" y="0"></use><use xlink:href="#E183-MJMAIN-2C" x="2719" y="0"></use><use xlink:href="#E183-MJMAIN-31" x="3164" y="0"></use><use xlink:href="#E183-MJMAIN-7D" x="3664" y="0"></use></g></svg></span><script type="math/tex">y \in \lbrace 0, 1\rbrace</script><span>,这显得非常怪异。</span></p><p>&nbsp;</p><p><span>区别于线性回归算法,逻辑回归算法是一个分类算法,</span><strong><span>其输出值永远在 0 到 1 之间</span></strong><span>,即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.478ex" height="2.577ex" viewBox="0 -806.1 5802.9 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E184-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E184-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E184-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E184-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E184-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E184-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E184-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E184-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E184-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E184-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E184-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E184-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E184-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E184-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E184-MJMAIN-2208" x="2635" y="0"></use><use xlink:href="#E184-MJMAIN-28" x="3580" y="0"></use><use xlink:href="#E184-MJMAIN-30" x="3969" y="0"></use><use xlink:href="#E184-MJMAIN-2C" x="4469" y="0"></use><use xlink:href="#E184-MJMAIN-31" x="4913" y="0"></use><use xlink:href="#E184-MJMAIN-29" x="5413" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x) \in (0,1)</script><span>。</span></p><h2><a name="62-假设函数表示hypothesis-representation" class="md-header-anchor"></a><span>6.2 假设函数表示(Hypothesis Representation)</span></h2><p><span>为了使 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.478ex" height="2.577ex" viewBox="0 -806.1 5802.9 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E185-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E185-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E185-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E185-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E185-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E185-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E185-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E185-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E185-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E185-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E185-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E185-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E185-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E185-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E185-MJMAIN-2208" x="2635" y="0"></use><g transform="translate(3580,0)"><use xlink:href="#E185-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E185-MJMAIN-30" x="389" y="0"></use><use xlink:href="#E185-MJMAIN-2C" x="889" y="0"></use><use xlink:href="#E185-MJMAIN-31" x="1333" y="0"></use><use xlink:href="#E185-MJMAIN-29" x="1833" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta(x) \in \left(0, 1\right)</script><span>,引入逻辑回归模型,定义假设函数</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n26" cid="n26" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-490-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="23.502ex" height="3.161ex" viewBox="0 -956.9 10118.9 1361" role="img" focusable="false" style="vertical-align: -0.938ex; max-width: 100%;"><defs><path stroke-width="0" id="E500-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E500-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E500-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E500-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E500-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E500-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E500-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E500-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E500-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E500-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E500-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E500-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E500-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E500-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E500-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E500-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E500-MJMAIN-3D" x="2802" y="0"></use><use xlink:href="#E500-MJMATHI-67" x="3857" y="0"></use><use xlink:href="#E500-MJMAIN-28" x="4337" y="0"></use><use xlink:href="#E500-MJMATHI-7A" x="4726" y="0"></use><use xlink:href="#E500-MJMAIN-29" x="5194" y="0"></use><use xlink:href="#E500-MJMAIN-3D" x="5861" y="0"></use><use xlink:href="#E500-MJMATHI-67" x="6917" y="0"></use><g transform="translate(7564,0)"><use xlink:href="#E500-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E500-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E500-MJMATHI-54" x="663" y="583"></use></g><use xlink:href="#E500-MJMATHI-78" x="1524" y="0"></use><use xlink:href="#E500-MJSZ1-29" x="2096" y="-1"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-490">h_\theta \left( x \right)=g(z)=g\left(\theta^{T}x \right)</script></div></div><p><span>对比线性回归函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.766ex" height="2.811ex" viewBox="0 -906.7 5496.7 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E186-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E186-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E186-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E186-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E186-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E186-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E186-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E186-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E186-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E186-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E186-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E186-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E186-MJMAIN-3D" x="2802" y="0"></use><g transform="translate(3857,0)"><use xlink:href="#E186-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E186-MJMATHI-54" x="663" y="513"></use></g><use xlink:href="#E186-MJMATHI-78" x="4924" y="0"></use></g></svg></span><script type="math/tex">h_\theta \left( x \right)=\theta^{T}x</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.115ex" height="1.877ex" viewBox="0 -504.6 480 808.1" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E187-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E187-MJMATHI-67" x="0" y="0"></use></g></svg></span><script type="math/tex">g</script><span> 表示逻辑函数(</span><a href='https://en.wikipedia.org/wiki/Logistic_function' target='_blank'><span>logistic function</span></a><span>),复合起来,则称为逻辑回归函数。</span></p><p><span>逻辑函数是 S 形函数,会将所有实数映射到 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.162ex" height="2.577ex" viewBox="0 -806.1 2222.7 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E188-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E188-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E188-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E188-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E188-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E188-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E188-MJMAIN-30" x="389" y="0"></use><use xlink:href="#E188-MJMAIN-2C" x="889" y="0"></use><use xlink:href="#E188-MJMAIN-31" x="1333" y="0"></use><use xlink:href="#E188-MJMAIN-29" x="1833" y="0"></use></g></svg></span><script type="math/tex">(0, 1)</script><span> 范围。</span></p><p><a href='https://en.wikipedia.org/wiki/Sigmoid_function' target='_blank'><span>sigmoid 函数</span></a><span>(如下图)是逻辑函数的特殊情况,其公式为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.805ex" height="3.511ex" viewBox="0 -956.9 5513.1 1511.8" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E189-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E189-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E189-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E189-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E189-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E189-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E189-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E189-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E189-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E189-MJMATHI-67" x="0" y="0"></use><g transform="translate(646,0)"><use xlink:href="#E189-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E189-MJMATHI-7A" x="389" y="0"></use><use xlink:href="#E189-MJMAIN-29" x="857" y="0"></use></g><use xlink:href="#E189-MJMAIN-3D" x="2170" y="0"></use><g transform="translate(2948,0)"><g transform="translate(397,0)"><rect stroke="none" width="2046" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E189-MJMAIN-31" x="1197" y="571"></use><g transform="translate(60,-401)"><use transform="scale(0.707)" xlink:href="#E189-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E189-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E189-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E189-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E189-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">g\left( z \right)=\frac{1}{1+{{e}^{-z}}}</script><span>。 </span></p><p><img src="images/2413fbec8ff9fa1f19aaf78265b8a33b_Logistic_function.png" referrerpolicy="no-referrer" alt="sigmoid function"></p><p><span>应用 sigmoid 函数,则逻辑回归模型:</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="25.309ex" height="3.978ex" viewBox="0 -956.9 10897 1712.8" role="img" focusable="false" style="vertical-align: -1.756ex;"><defs><path stroke-width="0" id="E190-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E190-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E190-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E190-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E190-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E190-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E190-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E190-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E190-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E190-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E190-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E190-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E190-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E190-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E190-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E190-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E190-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E190-MJMAIN-3D" x="2635" y="0"></use><use xlink:href="#E190-MJMATHI-67" x="3691" y="0"></use><use xlink:href="#E190-MJMAIN-28" x="4171" y="0"></use><g transform="translate(4560,0)"><use xlink:href="#E190-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E190-MJMATHI-54" x="663" y="513"></use></g><use xlink:href="#E190-MJMATHI-78" x="5626" y="0"></use><use xlink:href="#E190-MJMAIN-29" x="6198" y="0"></use><use xlink:href="#E190-MJMAIN-3D" x="6865" y="0"></use><g transform="translate(7643,0)"><g transform="translate(397,0)"><rect stroke="none" width="2735" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E190-MJMAIN-31" x="1684" y="571"></use><g transform="translate(60,-607)"><use transform="scale(0.707)" xlink:href="#E190-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E190-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E190-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E190-MJMAIN-2212" x="0" y="0"></use><g transform="translate(389,0)"><use transform="scale(0.5)" xlink:href="#E190-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E190-MJMATHI-54" x="469" y="318"></use></g><use transform="scale(0.5)" xlink:href="#E190-MJMATHI-78" x="2051" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">h_{\theta}(x)=g(\theta^Tx) =\frac{1}{1+e^{-\theta^Tx}}</script></p><p><span>逻辑回归模型中,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.863ex" height="2.577ex" viewBox="0 -806.1 2524.3 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E191-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E191-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E191-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E191-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E191-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E191-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E191-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E191-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E191-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E191-MJMAIN-29" x="961" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta \left( x \right)</script><span> 的作用是,根据输入 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.329ex" height="1.41ex" viewBox="0 -504.6 572 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E17-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E17-MJMATHI-78" x="0" y="0"></use></g></svg></span><script type="math/tex">x</script><span> 以及参数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span>,计算得出”输出 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E217-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E217-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E217-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E217-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E217-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E217-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y=1</script><span>“的可能性(estimated probability),概率学中表示为:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n33" cid="n33" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-491-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="42.533ex" height="5.846ex" viewBox="0 -1509.8 18312.7 2517" role="img" focusable="false" style="vertical-align: -2.339ex; max-width: 100%;"><defs><path stroke-width="0" id="E501-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E501-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E501-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E501-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E501-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E501-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E501-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path stroke-width="0" id="E501-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E501-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E501-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E501-MJMAIN-3B" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 85 94 103T137 121Q202 121 202 8Q202 -44 183 -94T144 -169T118 -194Q115 -194 106 -186T95 -174Q94 -171 107 -155T137 -107T160 -38Q161 -32 162 -22T165 -4T165 4Q165 5 161 4T142 0Q110 0 94 18T78 60Z"></path><path stroke-width="0" id="E501-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E501-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E501-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,650)"><use xlink:href="#E501-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E501-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E501-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E501-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E501-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="2635" y="0"></use><use xlink:href="#E501-MJMATHI-50" x="3691" y="0"></use><use xlink:href="#E501-MJMAIN-28" x="4442" y="0"></use><use xlink:href="#E501-MJMATHI-79" x="4831" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="5605" y="0"></use><use xlink:href="#E501-MJMAIN-31" x="6661" y="0"></use><use xlink:href="#E501-MJMAIN-7C" x="7161" y="0"></use><use xlink:href="#E501-MJMATHI-78" x="7439" y="0"></use><use xlink:href="#E501-MJMAIN-3B" x="8011" y="0"></use><use xlink:href="#E501-MJMATHI-3B8" x="8456" y="0"></use><use xlink:href="#E501-MJMAIN-29" x="8925" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="9592" y="0"></use><use xlink:href="#E501-MJMAIN-31" x="10647" y="0"></use><use xlink:href="#E501-MJMAIN-2212" x="11370" y="0"></use><use xlink:href="#E501-MJMATHI-50" x="12370" y="0"></use><use xlink:href="#E501-MJMAIN-28" x="13121" y="0"></use><use xlink:href="#E501-MJMATHI-79" x="13510" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="14285" y="0"></use><use xlink:href="#E501-MJMAIN-30" x="15340" y="0"></use><use xlink:href="#E501-MJMAIN-7C" x="15840" y="0"></use><use xlink:href="#E501-MJMATHI-78" x="16118" y="0"></use><use xlink:href="#E501-MJMAIN-3B" x="16690" y="0"></use><use xlink:href="#E501-MJMATHI-3B8" x="17135" y="0"></use><use xlink:href="#E501-MJMAIN-29" x="17604" y="0"></use></g><g transform="translate(0,-700)"><use xlink:href="#E501-MJMATHI-50" x="0" y="0"></use><use xlink:href="#E501-MJMAIN-28" x="751" y="0"></use><use xlink:href="#E501-MJMATHI-79" x="1140" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="1914" y="0"></use><use xlink:href="#E501-MJMAIN-30" x="2970" y="0"></use><use xlink:href="#E501-MJMAIN-7C" x="3470" y="0"></use><use xlink:href="#E501-MJMATHI-78" x="3748" y="0"></use><use xlink:href="#E501-MJMAIN-3B" x="4320" y="0"></use><use xlink:href="#E501-MJMATHI-3B8" x="4765" y="0"></use><use xlink:href="#E501-MJMAIN-29" x="5234" y="0"></use><use xlink:href="#E501-MJMAIN-2B" x="5845" y="0"></use><use xlink:href="#E501-MJMATHI-50" x="6845" y="0"></use><use xlink:href="#E501-MJMAIN-28" x="7596" y="0"></use><use xlink:href="#E501-MJMATHI-79" x="7985" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="8760" y="0"></use><use xlink:href="#E501-MJMAIN-31" x="9816" y="0"></use><use xlink:href="#E501-MJMAIN-7C" x="10316" y="0"></use><use xlink:href="#E501-MJMATHI-78" x="10594" y="0"></use><use xlink:href="#E501-MJMAIN-3B" x="11166" y="0"></use><use xlink:href="#E501-MJMATHI-3B8" x="11610" y="0"></use><use xlink:href="#E501-MJMAIN-29" x="12079" y="0"></use><use xlink:href="#E501-MJMAIN-3D" x="12746" y="0"></use><use xlink:href="#E501-MJMAIN-31" x="13802" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-491">\begin{align*}
& h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \\
& P(y = 0 | x;\theta) + P(y = 1 | x ; \theta) = 1
\end{align*}</script></div></div><p><span>以肿瘤诊断为例,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.928ex" height="2.577ex" viewBox="0 -806.1 5135.9 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E193-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E193-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E193-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E193-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E193-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E193-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E193-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E193-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E193-MJMAIN-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E193-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E193-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E193-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E193-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E193-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E193-MJMAIN-3D" x="2802" y="0"></use><g transform="translate(3857,0)"><use xlink:href="#E193-MJMAIN-30"></use><use xlink:href="#E193-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E193-MJMAIN-37" x="778" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta \left( x \right)=0.7</script><span> 表示病人有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.257ex" height="2.227ex" viewBox="0 -806.1 1833 958.9" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E194-MJMAIN-37" d="M55 458Q56 460 72 567L88 674Q88 676 108 676H128V672Q128 662 143 655T195 646T364 644H485V605L417 512Q408 500 387 472T360 435T339 403T319 367T305 330T292 284T284 230T278 162T275 80Q275 66 275 52T274 28V19Q270 2 255 -10T221 -22Q210 -22 200 -19T179 0T168 40Q168 198 265 368Q285 400 349 489L395 552H302Q128 552 119 546Q113 543 108 522T98 479L95 458V455H55V458Z"></path><path stroke-width="0" id="E194-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E194-MJMAIN-25" d="M465 605Q428 605 394 614T340 632T319 641Q332 608 332 548Q332 458 293 403T202 347Q145 347 101 402T56 548Q56 637 101 693T202 750Q241 750 272 719Q359 642 464 642Q580 642 650 732Q662 748 668 749Q670 750 673 750Q682 750 688 743T693 726Q178 -47 170 -52Q166 -56 160 -56Q147 -56 142 -45Q137 -36 142 -27Q143 -24 363 304Q469 462 525 546T581 630Q528 605 465 605ZM207 385Q235 385 263 427T292 548Q292 617 267 664T200 712Q193 712 186 709T167 698T147 668T134 615Q132 595 132 548V527Q132 436 165 403Q183 385 203 385H207ZM500 146Q500 234 544 290T647 347Q699 347 737 292T776 146T737 0T646 -56Q590 -56 545 0T500 146ZM651 -18Q679 -18 707 24T736 146Q736 215 711 262T644 309Q637 309 630 306T611 295T591 265T578 212Q577 200 577 146V124Q577 -18 647 -18H651Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E194-MJMAIN-37"></use><use xlink:href="#E194-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E194-MJMAIN-25" x="1000" y="0"></use></g></svg></span><script type="math/tex">70\%</script><span> 的概率得了恶性肿瘤。</span></p><h2><a name="63-决策边界decision-boundary" class="md-header-anchor"></a><span>6.3 决策边界(Decision Boundary)</span></h2><p><span>决策边界的概念,可帮助我们更好地理解逻辑回归模型的拟合原理。</span></p><p><span>在逻辑回归中,有假设函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="23.502ex" height="3.044ex" viewBox="0 -906.7 10118.9 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E195-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E195-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E195-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E195-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E195-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E195-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E195-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E195-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E195-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E195-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E195-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E195-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E195-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E195-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E195-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E195-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E195-MJMAIN-3D" x="2802" y="0"></use><use xlink:href="#E195-MJMATHI-67" x="3857" y="0"></use><use xlink:href="#E195-MJMAIN-28" x="4337" y="0"></use><use xlink:href="#E195-MJMATHI-7A" x="4726" y="0"></use><use xlink:href="#E195-MJMAIN-29" x="5194" y="0"></use><use xlink:href="#E195-MJMAIN-3D" x="5861" y="0"></use><use xlink:href="#E195-MJMATHI-67" x="6917" y="0"></use><g transform="translate(7564,0)"><use xlink:href="#E195-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E195-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E195-MJMATHI-54" x="663" y="513"></use></g><use xlink:href="#E195-MJMATHI-78" x="1524" y="0"></use><use xlink:href="#E195-MJSZ1-29" x="2096" y="-1"></use></g></g></svg></span><script type="math/tex">h_\theta \left( x \right)=g(z)=g\left(\theta^{T}x \right)</script><span>。</span></p><p><span>为了得出分类的结果,这里和前面一样,规定以 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.968ex" height="1.994ex" viewBox="0 -755.9 1278 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E196-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E196-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E196-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E196-MJMAIN-30"></use><use xlink:href="#E196-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E196-MJMAIN-35" x="778" y="0"></use></g></svg></span><script type="math/tex">0.5</script><span> 为阈值:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n41" cid="n41" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-492-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="21.308ex" height="5.846ex" viewBox="0 -1509.8 9174.4 2517" role="img" focusable="false" style="vertical-align: -2.339ex; max-width: 100%;"><defs><path stroke-width="0" id="E502-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E502-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E502-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E502-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E502-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E502-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E502-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E502-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E502-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path stroke-width="0" id="E502-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E502-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E502-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E502-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E502-MJMAIN-3C" d="M694 -11T694 -19T688 -33T678 -40Q671 -40 524 29T234 166L90 235Q83 240 83 250Q83 261 91 266Q664 540 678 540Q681 540 687 534T694 519T687 505Q686 504 417 376L151 250L417 124Q686 -4 687 -5Q694 -11 694 -19Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,650)"><use xlink:href="#E502-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E502-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E502-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E502-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E502-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E502-MJMAIN-2265" x="2635" y="0"></use><g transform="translate(3691,0)"><use xlink:href="#E502-MJMAIN-30"></use><use xlink:href="#E502-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E502-MJMAIN-35" x="778" y="0"></use></g><use xlink:href="#E502-MJMAIN-2192" x="5246" y="0"></use><use xlink:href="#E502-MJMATHI-79" x="6524" y="0"></use><use xlink:href="#E502-MJMAIN-3D" x="7299" y="0"></use><use xlink:href="#E502-MJMAIN-31" x="8355" y="0"></use></g><g transform="translate(0,-700)"><use xlink:href="#E502-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E502-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E502-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E502-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E502-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E502-MJMAIN-3C" x="2635" y="0"></use><g transform="translate(3691,0)"><use xlink:href="#E502-MJMAIN-30"></use><use xlink:href="#E502-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E502-MJMAIN-35" x="778" y="0"></use></g><use xlink:href="#E502-MJMAIN-2192" x="5246" y="0"></use><use xlink:href="#E502-MJMATHI-79" x="6524" y="0"></use><use xlink:href="#E502-MJMAIN-3D" x="7299" y="0"></use><use xlink:href="#E502-MJMAIN-30" x="8355" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-492">\begin{align*}
& h_\theta(x) \geq 0.5 \rightarrow y = 1 \\
& h_\theta(x) < 0.5 \rightarrow y = 0 \\
\end{align*}</script></div></div><p><span>回忆一下 sigmoid 函数的图像:</span></p><p><img src="images/2413fbec8ff9fa1f19aaf78265b8a33b_Logistic_function.png" referrerpolicy="no-referrer" alt="sigmoid function"></p><p><span>观察可得当 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.074ex" height="2.577ex" viewBox="0 -806.1 4337.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E197-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E197-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E197-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E197-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E197-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E197-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E197-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E197-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E197-MJMATHI-67" x="0" y="0"></use><use xlink:href="#E197-MJMAIN-28" x="480" y="0"></use><use xlink:href="#E197-MJMATHI-7A" x="869" y="0"></use><use xlink:href="#E197-MJMAIN-29" x="1337" y="0"></use><use xlink:href="#E197-MJMAIN-2265" x="2003" y="0"></use><g transform="translate(3059,0)"><use xlink:href="#E197-MJMAIN-30"></use><use xlink:href="#E197-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E197-MJMAIN-35" x="778" y="0"></use></g></g></svg></span><script type="math/tex">g(z) \geq 0.5</script><span> 时,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.346ex" height="2.232ex" viewBox="0 -757.4 2301.6 960.8" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E205-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E205-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E205-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E205-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E205-MJMAIN-2265" x="745" y="0"></use><use xlink:href="#E205-MJMAIN-30" x="1801" y="0"></use></g></svg></span><script type="math/tex">z \geq 0</script><span>,即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.065ex" height="2.577ex" viewBox="0 -906.7 3472.4 1109.7" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E199-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E199-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E199-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E199-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E199-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E199-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E199-MJMATHI-54" x="663" y="513"></use><use xlink:href="#E199-MJMATHI-78" x="1066" y="0"></use><use xlink:href="#E199-MJMAIN-2265" x="1916" y="0"></use><use xlink:href="#E199-MJMAIN-30" x="2972" y="0"></use></g></svg></span><script type="math/tex">\theta^Tx \geq 0</script><span>。</span></p><p><span>同线性回归模型的不同点在于: </span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n46" cid="n46" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-493-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="31.492ex" height="6.079ex" viewBox="0 -1560 13559.2 2617.5" role="img" focusable="false" style="vertical-align: -2.456ex; max-width: 100%;"><defs><path stroke-width="0" id="E503-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E503-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E503-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E503-MJMAIN-221E" d="M55 217Q55 305 111 373T254 442Q342 442 419 381Q457 350 493 303L507 284L514 294Q618 442 747 442Q833 442 888 374T944 214Q944 128 889 59T743 -11Q657 -11 580 50Q542 81 506 128L492 147L485 137Q381 -11 252 -11Q166 -11 111 57T55 217ZM907 217Q907 285 869 341T761 397Q740 397 720 392T682 378T648 359T619 335T594 310T574 285T559 263T548 246L543 238L574 198Q605 158 622 138T664 94T714 61T765 51Q827 51 867 100T907 217ZM92 214Q92 145 131 89T239 33Q357 33 456 193L425 233Q364 312 334 337Q285 380 233 380Q171 380 132 331T92 214Z"></path><path stroke-width="0" id="E503-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E503-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E503-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E503-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E503-MJMAIN-21D2" d="M580 514Q580 525 596 525Q601 525 604 525T609 525T613 524T615 523T617 520T619 517T622 512Q659 438 720 381T831 300T927 263Q944 258 944 250T935 239T898 228T840 204Q696 134 622 -12Q618 -21 615 -22T600 -24Q580 -24 580 -17Q580 -13 585 0Q620 69 671 123L681 133H70Q56 140 56 153Q56 168 72 173H725L735 181Q774 211 852 250Q851 251 834 259T789 283T735 319L725 327H72Q56 332 56 347Q56 360 70 367H681L671 377Q638 412 609 458T580 514Z"></path><path stroke-width="0" id="E503-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E503-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E503-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E503-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E503-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,637)"><use xlink:href="#E503-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E503-MJMAIN-2192" x="745" y="0"></use><use xlink:href="#E503-MJMAIN-2B" x="2023" y="0"></use><use xlink:href="#E503-MJMAIN-221E" x="2801" y="0"></use><use xlink:href="#E503-MJMAIN-2C" x="3801" y="0"></use><g transform="translate(4246,0)"><use xlink:href="#E503-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,412)"><use transform="scale(0.707)" xlink:href="#E503-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E503-MJMAIN-221E" x="778" y="0"></use></g></g><use xlink:href="#E503-MJMAIN-2192" x="6347" y="0"></use><use xlink:href="#E503-MJMAIN-30" x="7625" y="0"></use><use xlink:href="#E503-MJMAIN-21D2" x="8402" y="0"></use><use xlink:href="#E503-MJMATHI-67" x="9680" y="0"></use><use xlink:href="#E503-MJMAIN-28" x="10160" y="0"></use><use xlink:href="#E503-MJMATHI-7A" x="10549" y="0"></use><use xlink:href="#E503-MJMAIN-29" x="11017" y="0"></use><use xlink:href="#E503-MJMAIN-3D" x="11684" y="0"></use><use xlink:href="#E503-MJMAIN-31" x="12740" y="0"></use></g><g transform="translate(50,-713)"><use xlink:href="#E503-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E503-MJMAIN-2192" x="745" y="0"></use><use xlink:href="#E503-MJMAIN-2212" x="2023" y="0"></use><use xlink:href="#E503-MJMAIN-221E" x="2801" y="0"></use><use xlink:href="#E503-MJMAIN-2C" x="3801" y="0"></use><g transform="translate(4246,0)"><use xlink:href="#E503-MJMATHI-65" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E503-MJMAIN-221E" x="659" y="583"></use></g><use xlink:href="#E503-MJMAIN-2192" x="5797" y="0"></use><use xlink:href="#E503-MJMAIN-221E" x="7074" y="0"></use><use xlink:href="#E503-MJMAIN-21D2" x="8352" y="0"></use><use xlink:href="#E503-MJMATHI-67" x="9630" y="0"></use><use xlink:href="#E503-MJMAIN-28" x="10110" y="0"></use><use xlink:href="#E503-MJMATHI-7A" x="10499" y="0"></use><use xlink:href="#E503-MJMAIN-29" x="10967" y="0"></use><use xlink:href="#E503-MJMAIN-3D" x="11634" y="0"></use><use xlink:href="#E503-MJMAIN-30" x="12689" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-493">\begin{align*}
z \to +\infty, e^{-\infty} \to 0 \Rightarrow g(z)=1 \\
z \to -\infty, e^{\infty}\to \infty \Rightarrow g(z)=0
\end{align*}</script></div></div><p><span>直观一点来个例子,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="29.14ex" height="2.577ex" viewBox="0 -806.1 12546.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E200-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E200-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E200-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E200-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E200-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E200-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E200-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E200-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E200-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E200-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E200-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E200-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E200-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E200-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E200-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E200-MJMAIN-3D" x="2802" y="0"></use><use xlink:href="#E200-MJMATHI-67" x="3857" y="0"></use><g transform="translate(4504,0)"><use xlink:href="#E200-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E200-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMAIN-30" x="663" y="-213"></use></g><use xlink:href="#E200-MJMAIN-2B" x="1533" y="0"></use><g transform="translate(2533,0)"><use xlink:href="#E200-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMAIN-31" x="663" y="-213"></use></g><g transform="translate(3456,0)"><use xlink:href="#E200-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMAIN-31" x="808" y="-213"></use></g><use xlink:href="#E200-MJMAIN-2B" x="4704" y="0"></use><g transform="translate(5704,0)"><use xlink:href="#E200-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMAIN-32" x="663" y="-213"></use></g><g transform="translate(6627,0)"><use xlink:href="#E200-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E200-MJMAIN-32" x="808" y="-213"></use></g><use xlink:href="#E200-MJMAIN-29" x="7652" y="0"></use></g></g></svg></span><script type="math/tex">{h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\right)</script><span> 是下图模型的假设函数:</span></p><p><img src="images/20180111_000814.png" referrerpolicy="no-referrer"></p><p><span>根据上面的讨论,要进行分类,那么只要 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="21.129ex" height="2.461ex" viewBox="0 -806.1 9097.2 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E201-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E201-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E201-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E201-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E201-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E201-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E201-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E201-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E201-MJMAIN-30" x="663" y="-213"></use><use xlink:href="#E201-MJMAIN-2B" x="1144" y="0"></use><g transform="translate(2144,0)"><use xlink:href="#E201-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E201-MJMAIN-31" x="663" y="-213"></use></g><g transform="translate(3067,0)"><use xlink:href="#E201-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E201-MJMAIN-31" x="808" y="-213"></use></g><use xlink:href="#E201-MJMAIN-2B" x="4315" y="0"></use><g transform="translate(5315,0)"><use xlink:href="#E201-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E201-MJMAIN-32" x="663" y="-213"></use></g><g transform="translate(6238,0)"><use xlink:href="#E201-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E201-MJMAIN-32" x="808" y="-213"></use></g><use xlink:href="#E201-MJMAIN-2265" x="7541" y="0"></use><use xlink:href="#E201-MJMAIN-30" x="8597" y="0"></use></g></svg></span><script type="math/tex"> {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\geq0</script><span> 时,就预测 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E222-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E222-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E222-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E222-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E222-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E222-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y = 1</script><span>,即预测为正向类。</span></p><p><span>如果取 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.994ex" height="9.114ex" viewBox="0 -2213.4 4733.6 3924.2" role="img" focusable="false" style="vertical-align: -3.974ex;"><defs><path stroke-width="0" id="E203-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E203-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E203-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E203-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E203-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E203-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E203-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E203-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E203-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E203-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E203-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E203-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E203-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E203-MJMATHI-3B8" x="0" y="0"></use><use xlink:href="#E203-MJMAIN-3D" x="746" y="0"></use><g transform="translate(1802,0)"><g transform="translate(0,2150)"><use xlink:href="#E203-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E203-MJSZ4-23A2"></use></g><use xlink:href="#E203-MJSZ4-23A3" x="0" y="-3156"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,1350)"><use xlink:href="#E203-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E203-MJMAIN-33" x="778" y="0"></use></g><use xlink:href="#E203-MJMAIN-31" x="389" y="-50"></use><use xlink:href="#E203-MJMAIN-31" x="389" y="-1450"></use></g></g><g transform="translate(2264,2150)"><use xlink:href="#E203-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-2051) scale(1,0.5016611295681063)"><use xlink:href="#E203-MJSZ4-23A5"></use></g><use xlink:href="#E203-MJSZ4-23A6" x="0" y="-3156"></use></g></g></g></svg></span><script type="math/tex">\theta = \begin{bmatrix} -3\\1\\1\end{bmatrix}</script><span>,则有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="17.595ex" height="2.232ex" viewBox="0 -757.4 7575.6 960.8" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E204-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E204-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E204-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E204-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E204-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E204-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E204-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E204-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E204-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E204-MJMAIN-3D" x="745" y="0"></use><use xlink:href="#E204-MJMAIN-2212" x="1801" y="0"></use><use xlink:href="#E204-MJMAIN-33" x="2579" y="0"></use><use xlink:href="#E204-MJMAIN-2B" x="3301" y="0"></use><g transform="translate(4302,0)"><use xlink:href="#E204-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E204-MJMAIN-31" x="808" y="-213"></use></g><use xlink:href="#E204-MJMAIN-2B" x="5549" y="0"></use><g transform="translate(6549,0)"><use xlink:href="#E204-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E204-MJMAIN-32" x="808" y="-213"></use></g></g></svg></span><script type="math/tex">z = -3+{x_1}+{x_2}</script><span>,当 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.346ex" height="2.232ex" viewBox="0 -757.4 2301.6 960.8" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E205-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E205-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E205-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E205-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E205-MJMAIN-2265" x="745" y="0"></use><use xlink:href="#E205-MJMAIN-30" x="1801" y="0"></use></g></svg></span><script type="math/tex">z \geq 0</script><span> 即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.862ex" height="2.232ex" viewBox="0 -757.4 5107.1 960.8" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E206-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E206-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E206-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E206-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E206-MJMAIN-2265" d="M83 616Q83 624 89 630T99 636Q107 636 253 568T543 431T687 361Q694 356 694 346T687 331Q685 329 395 192L107 56H101Q83 58 83 76Q83 77 83 79Q82 86 98 95Q117 105 248 167Q326 204 378 228L626 346L360 472Q291 505 200 548Q112 589 98 597T83 616ZM84 -118Q84 -108 99 -98H678Q694 -104 694 -118Q694 -130 679 -138H98Q84 -131 84 -118Z"></path><path stroke-width="0" id="E206-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E206-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E206-MJMAIN-31" x="808" y="-213"></use><use xlink:href="#E206-MJMAIN-2B" x="1247" y="0"></use><g transform="translate(2247,0)"><use xlink:href="#E206-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E206-MJMAIN-32" x="808" y="-213"></use></g><use xlink:href="#E206-MJMAIN-2265" x="3551" y="0"></use><use xlink:href="#E206-MJMAIN-33" x="4607" y="0"></use></g></svg></span><script type="math/tex">{x_1}+{x_2} \geq 3</script><span> 时,易绘制图中的品红色直线即</span><strong><span>决策边界</span></strong><span>,为正向类(以红叉标注的数据)给出 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E217-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E217-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E217-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E217-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E217-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E217-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y=1</script><span> 的分类预测结果。</span></p><p>&nbsp;</p><p><span>上面讨论了逻辑回归模型中线性拟合的例子,下面则是一个多项式拟合的例子,和线性回归中的情况也是类似的。</span></p><p><span>为了拟合下图数据,建模多项式假设函数:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n54" cid="n54" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-494-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="44.188ex" height="3.044ex" viewBox="0 -906.7 19025.3 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex; max-width: 100%;"><defs><path stroke-width="0" id="E504-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E504-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E504-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E504-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E504-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E504-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E504-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E504-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E504-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E504-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E504-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E504-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E504-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E504-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E504-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E504-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMATHI-3B8" x="814" y="-218"></use><g transform="translate(1174,0)"><use xlink:href="#E504-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E504-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E504-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E504-MJMAIN-3D" x="2802" y="0"></use><use xlink:href="#E504-MJMATHI-67" x="3857" y="0"></use><g transform="translate(4504,0)"><use xlink:href="#E504-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E504-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-30" x="663" y="-213"></use></g><use xlink:href="#E504-MJMAIN-2B" x="1602" y="0"></use><g transform="translate(2602,0)"><use xlink:href="#E504-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-31" x="663" y="-213"></use></g><g transform="translate(3525,0)"><use xlink:href="#E504-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-31" x="808" y="-213"></use></g><use xlink:href="#E504-MJMAIN-2B" x="4773" y="0"></use><g transform="translate(5773,0)"><use xlink:href="#E504-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-32" x="663" y="-213"></use></g><g transform="translate(6696,0)"><use xlink:href="#E504-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-32" x="808" y="-213"></use></g><use xlink:href="#E504-MJMAIN-2B" x="7943" y="0"></use><g transform="translate(8944,0)"><use xlink:href="#E504-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-33" x="663" y="-213"></use></g><g transform="translate(9866,0)"><use xlink:href="#E504-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-32" x="808" y="487"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-31" x="808" y="-434"></use></g><use xlink:href="#E504-MJMAIN-2B" x="11114" y="0"></use><g transform="translate(12114,0)"><use xlink:href="#E504-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-34" x="663" y="-213"></use></g><g transform="translate(13037,0)"><use xlink:href="#E504-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-32" x="808" y="487"></use><use transform="scale(0.707)" xlink:href="#E504-MJMAIN-32" x="808" y="-434"></use></g><use xlink:href="#E504-MJSZ1-29" x="14062" y="-1"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-494">{h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}+{\theta_{3}}x_{1}^{2}+{\theta_{4}}x_{2}^{2} \right)</script></div></div><p><span>这里取 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.994ex" height="15.651ex" viewBox="0 -3620.7 4733.6 6738.7" role="img" focusable="false" style="vertical-align: -7.242ex;"><defs><path stroke-width="0" id="E208-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E208-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E208-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E208-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E208-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E208-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E208-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E208-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E208-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E208-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E208-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E208-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E208-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E208-MJMATHI-3B8" x="0" y="0"></use><use xlink:href="#E208-MJMAIN-3D" x="746" y="0"></use><g transform="translate(1802,0)"><g transform="translate(0,3550)"><use xlink:href="#E208-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-4851) scale(1,5.152823920265781)"><use xlink:href="#E208-MJSZ4-23A2"></use></g><use xlink:href="#E208-MJSZ4-23A3" x="0" y="-5956"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><g transform="translate(0,2750)"><use xlink:href="#E208-MJMAIN-2212" x="0" y="0"></use><use xlink:href="#E208-MJMAIN-31" x="778" y="0"></use></g><use xlink:href="#E208-MJMAIN-30" x="389" y="1350"></use><use xlink:href="#E208-MJMAIN-30" x="389" y="-50"></use><use xlink:href="#E208-MJMAIN-31" x="389" y="-1450"></use><use xlink:href="#E208-MJMAIN-31" x="389" y="-2850"></use></g></g><g transform="translate(2264,3550)"><use xlink:href="#E208-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-4851) scale(1,5.152823920265781)"><use xlink:href="#E208-MJSZ4-23A5"></use></g><use xlink:href="#E208-MJSZ4-23A6" x="0" y="-5956"></use></g></g></g></svg></span><script type="math/tex">\theta = \begin{bmatrix} -1\\0\\0\\1\\1\end{bmatrix}</script><span>,决策边界对应了一个在原点处的单位圆(</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.969ex" height="2.577ex" viewBox="0 -906.7 6014.2 1109.7" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E209-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E209-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E209-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E209-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E209-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E209-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E209-MJMAIN-31" x="808" y="-213"></use><use transform="scale(0.707)" xlink:href="#E209-MJMAIN-32" x="1450" y="513"></use><use xlink:href="#E209-MJMAIN-2B" x="1701" y="0"></use><g transform="translate(2701,0)"><use xlink:href="#E209-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E209-MJMAIN-32" x="808" y="-213"></use><use transform="scale(0.707)" xlink:href="#E209-MJMAIN-32" x="1450" y="513"></use></g><use xlink:href="#E209-MJMAIN-3D" x="4458" y="0"></use><use xlink:href="#E209-MJMAIN-31" x="5514" y="0"></use></g></svg></span><script type="math/tex">{x_1}^2+{x_2}^2 = 1</script><span>),如此便可给出分类结果,如图中品红色曲线:</span></p><p>&nbsp;</p><p><img src="images/20180111_000653.png" referrerpolicy="no-referrer"></p><p><span>当然,通过一些更为复杂的多项式,还能拟合那些图像显得非常怪异的数据,使得决策边界形似碗状、爱心状等等。</span></p><p>&nbsp;</p><p><span>简单来说,决策边界就是</span><strong><span>分类的分界线</span></strong><span>,分类现在实际就由 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.087ex" height="1.41ex" viewBox="0 -504.6 468 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E210-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E210-MJMATHI-7A" x="0" y="0"></use></g></svg></span><script type="math/tex">z</script><span> (中的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span>)决定啦。</span></p><h2><a name="64-代价函数cost-function" class="md-header-anchor"></a><span>6.4 代价函数(Cost Function)</span></h2><p><span>那我们怎么知道决策边界是啥样?</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span> 多少时能很好的拟合数据?当然,见招拆招,总要来个 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span>。</span></p><p><span>如果直接套用线性回归的代价函数: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="31.906ex" height="5.846ex" viewBox="0 -1459.5 13737.2 2517" role="img" focusable="false" style="vertical-align: -2.456ex;"><defs><path stroke-width="0" id="E212-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E212-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E212-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E212-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E212-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E212-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E212-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E212-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E212-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E212-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E212-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E212-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E212-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E212-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path><path stroke-width="0" id="E212-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E212-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E212-MJMATHI-4A" x="0" y="0"></use><g transform="translate(799,0)"><use xlink:href="#E212-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E212-MJMATHI-3B8" x="389" y="0"></use><use xlink:href="#E212-MJMAIN-29" x="858" y="0"></use></g><use xlink:href="#E212-MJMAIN-3D" x="2324" y="0"></use><g transform="translate(3102,0)"><g transform="translate(397,0)"><rect stroke="none" width="1094" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-31" x="523" y="571"></use><g transform="translate(59,-376)"><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-6D" x="500" y="0"></use></g></g></g><g transform="translate(4881,0)"><use xlink:href="#E212-MJSZ1-2211" x="45" y="0"></use><g transform="translate(0,-888)"><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-6D" x="372" y="1343"></use></g><g transform="translate(6195,0)"><use xlink:href="#E212-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E212-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(1632,0)"><use xlink:href="#E212-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E212-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E212-MJSZ1-29" x="1924" y="-1"></use></g><use xlink:href="#E212-MJMAIN-2212" x="4236" y="0"></use><g transform="translate(5236,0)"><use xlink:href="#E212-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E212-MJSZ1-29" x="6630" y="-1"></use><use transform="scale(0.707)" xlink:href="#E212-MJMAIN-32" x="10024" y="877"></use></g></g></svg></span><script type="math/tex">J\left( {\theta} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}}</script></p><p><span>其中 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="16.009ex" height="3.044ex" viewBox="0 -906.7 6892.7 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E227-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E227-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E227-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E227-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E227-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E227-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E227-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E227-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E227-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E227-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E227-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E227-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E227-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E227-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E227-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E227-MJMAIN-3D" x="2635" y="0"></use><use xlink:href="#E227-MJMATHI-67" x="3691" y="0"></use><g transform="translate(4337,0)"><use xlink:href="#E227-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E227-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E227-MJMATHI-54" x="663" y="513"></use></g><use xlink:href="#E227-MJMATHI-78" x="1524" y="0"></use><use xlink:href="#E227-MJSZ1-29" x="2096" y="-1"></use></g></g></svg></span><script type="math/tex">h_\theta(x) = g\left(\theta^{T}x \right)</script><span>,可绘制关于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span> 的图像,如下图</span></p><p><img src="images/20180111_080314.png" referrerpolicy="no-referrer"></p><p><span>回忆线性回归中的平方损失函数,其是一个二次凸函数(碗状),二次凸函数的重要性质是只有一个局部最小点即全局最小点。上图中有许多局部最小点,这样将使得梯度下降算法无法确定收敛点是全局最优。</span></p><p><img src="images/20180111_080514.png" referrerpolicy="no-referrer"></p><p><span>如果此处的损失函数也是一个凸函数,是否也有同样的性质,从而最优化?这类讨论凸函数最优值的问题,被称为</span><strong><span>凸优化问题(Convex optimization)</span></strong><span>。</span></p><p><span>当然,损失函数不止平方损失函数一种。</span></p><p><span>对于逻辑回归,更换平方损失函数为</span><strong><span>对数损失函数</span></strong><span>,可由统计学中的最大似然估计方法推出代价函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span>:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n71" cid="n71" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-495-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="46.994ex" height="13.083ex" viewBox="0 -3067.8 20233.5 5633" role="img" focusable="false" style="vertical-align: -5.958ex; max-width: 100%;"><defs><path stroke-width="0" id="E505-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E505-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E505-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E505-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E505-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E505-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E505-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E505-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E505-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E505-MJMAIN-43" d="M56 342Q56 428 89 500T174 615T283 681T391 705Q394 705 400 705T408 704Q499 704 569 636L582 624L612 663Q639 700 643 704Q644 704 647 704T653 705H657Q660 705 666 699V419L660 413H626Q620 419 619 430Q610 512 571 572T476 651Q457 658 426 658Q322 658 252 588Q173 509 173 342Q173 221 211 151Q232 111 263 84T328 45T384 29T428 24Q517 24 571 93T626 244Q626 251 632 257H660L666 251V236Q661 133 590 56T403 -21Q262 -21 159 83T56 342Z"></path><path stroke-width="0" id="E505-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E505-MJMAIN-73" d="M295 316Q295 356 268 385T190 414Q154 414 128 401Q98 382 98 349Q97 344 98 336T114 312T157 287Q175 282 201 278T245 269T277 256Q294 248 310 236T342 195T359 133Q359 71 321 31T198 -10H190Q138 -10 94 26L86 19L77 10Q71 4 65 -1L54 -11H46H42Q39 -11 33 -5V74V132Q33 153 35 157T45 162H54Q66 162 70 158T75 146T82 119T101 77Q136 26 198 26Q295 26 295 104Q295 133 277 151Q257 175 194 187T111 210Q75 227 54 256T33 318Q33 357 50 384T93 424T143 442T187 447H198Q238 447 268 432L283 424L292 431Q302 440 314 448H322H326Q329 448 335 442V310L329 304H301Q295 310 295 316Z"></path><path stroke-width="0" id="E505-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E505-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E505-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E505-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E505-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E505-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E505-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E505-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E505-MJMAIN-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path stroke-width="0" id="E505-MJMAIN-66" d="M273 0Q255 3 146 3Q43 3 34 0H26V46H42Q70 46 91 49Q99 52 103 60Q104 62 104 224V385H33V431H104V497L105 564L107 574Q126 639 171 668T266 704Q267 704 275 704T289 705Q330 702 351 679T372 627Q372 604 358 590T321 576T284 590T270 627Q270 647 288 667H284Q280 668 273 668Q245 668 223 647T189 592Q183 572 182 497V431H293V385H185V225Q185 63 186 61T189 57T194 54T199 51T206 49T213 48T222 47T231 47T241 46T251 46H282V0H273Z"></path><path stroke-width="0" id="E505-MJMAIN-79" d="M69 -66Q91 -66 104 -80T118 -116Q118 -134 109 -145T91 -160Q84 -163 97 -166Q104 -168 111 -168Q131 -168 148 -159T175 -138T197 -106T213 -75T225 -43L242 0L170 183Q150 233 125 297Q101 358 96 368T80 381Q79 382 78 382Q66 385 34 385H19V431H26L46 430Q65 430 88 429T122 428Q129 428 142 428T171 429T200 430T224 430L233 431H241V385H232Q183 385 185 366L286 112Q286 113 332 227L376 341V350Q376 365 366 373T348 383T334 385H331V431H337H344Q351 431 361 431T382 430T405 429T422 429Q477 429 503 431H508V385H497Q441 380 422 345Q420 343 378 235T289 9T227 -131Q180 -204 113 -204Q69 -204 44 -177T19 -116Q19 -89 35 -78T69 -66Z"></path><path stroke-width="0" id="E505-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,1416)"><use xlink:href="#E505-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E505-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E505-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E505-MJMAIN-3D" x="2157" y="0"></use><g transform="translate(3213,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E505-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E505-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(4618,0)"><use xlink:href="#E505-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(6228,0)"><use xlink:href="#E505-MJMAIN-43" x="0" y="0"></use><use xlink:href="#E505-MJMAIN-6F" x="722" y="0"></use><use xlink:href="#E505-MJMAIN-73" x="1222" y="0"></use><use xlink:href="#E505-MJMAIN-74" x="1616" y="0"></use></g><use xlink:href="#E505-MJMAIN-28" x="8233" y="0"></use><g transform="translate(8622,0)"><use xlink:href="#E505-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E505-MJMAIN-28" x="9630" y="0"></use><g transform="translate(10019,0)"><use xlink:href="#E505-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E505-MJMAIN-29" x="11485" y="0"></use><use xlink:href="#E505-MJMAIN-2C" x="11874" y="0"></use><g transform="translate(12319,0)"><use xlink:href="#E505-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E505-MJMAIN-29" x="13712" y="0"></use></g><g transform="translate(0,-880)"><use xlink:href="#E505-MJMAIN-43" x="0" y="0"></use><use xlink:href="#E505-MJMAIN-6F" x="722" y="0"></use><use xlink:href="#E505-MJMAIN-73" x="1222" y="0"></use><use xlink:href="#E505-MJMAIN-74" x="1616" y="0"></use><use xlink:href="#E505-MJMAIN-28" x="2005" y="0"></use><g transform="translate(2394,0)"><use xlink:href="#E505-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E505-MJMAIN-28" x="3401" y="0"></use><use xlink:href="#E505-MJMATHI-78" x="3790" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="4362" y="0"></use><use xlink:href="#E505-MJMAIN-2C" x="4751" y="0"></use><use xlink:href="#E505-MJMATHI-79" x="5196" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="5693" y="0"></use><use xlink:href="#E505-MJMAIN-3D" x="6360" y="0"></use><use xlink:href="#E505-MJMAIN-2212" x="7415" y="0"></use><g transform="translate(8360,0)"><use xlink:href="#E505-MJMAIN-6C"></use><use xlink:href="#E505-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E505-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E505-MJMAIN-28" x="9638" y="0"></use><g transform="translate(10027,0)"><use xlink:href="#E505-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E505-MJMAIN-28" x="11035" y="0"></use><use xlink:href="#E505-MJMATHI-78" x="11424" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="11996" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="12385" y="0"></use></g><g transform="translate(0,-2230)"><use xlink:href="#E505-MJMAIN-43" x="0" y="0"></use><use xlink:href="#E505-MJMAIN-6F" x="722" y="0"></use><use xlink:href="#E505-MJMAIN-73" x="1222" y="0"></use><use xlink:href="#E505-MJMAIN-74" x="1616" y="0"></use><use xlink:href="#E505-MJMAIN-28" x="2005" y="0"></use><g transform="translate(2394,0)"><use xlink:href="#E505-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E505-MJMAIN-28" x="3401" y="0"></use><use xlink:href="#E505-MJMATHI-78" x="3790" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="4362" y="0"></use><use xlink:href="#E505-MJMAIN-2C" x="4751" y="0"></use><use xlink:href="#E505-MJMATHI-79" x="5196" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="5693" y="0"></use><use xlink:href="#E505-MJMAIN-3D" x="6360" y="0"></use><use xlink:href="#E505-MJMAIN-2212" x="7415" y="0"></use><g transform="translate(8360,0)"><use xlink:href="#E505-MJMAIN-6C"></use><use xlink:href="#E505-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E505-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E505-MJMAIN-28" x="9638" y="0"></use><use xlink:href="#E505-MJMAIN-31" x="10027" y="0"></use><use xlink:href="#E505-MJMAIN-2212" x="10749" y="0"></use><g transform="translate(11749,0)"><use xlink:href="#E505-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E505-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E505-MJMAIN-28" x="12757" y="0"></use><use xlink:href="#E505-MJMATHI-78" x="13146" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="13718" y="0"></use><use xlink:href="#E505-MJMAIN-29" x="14107" y="0"></use></g></g><g transform="translate(16759,0)"><g transform="translate(0,-880)"><use xlink:href="#E505-MJMAIN-69"></use><use xlink:href="#E505-MJMAIN-66" x="278" y="0"></use><use xlink:href="#E505-MJMAIN-79" x="834" y="0"></use><use xlink:href="#E505-MJMAIN-3D" x="1612" y="0"></use><use xlink:href="#E505-MJMAIN-31" x="2640" y="0"></use></g><g transform="translate(0,-2230)"><use xlink:href="#E505-MJMAIN-69"></use><use xlink:href="#E505-MJMAIN-66" x="278" y="0"></use><use xlink:href="#E505-MJMAIN-79" x="834" y="0"></use><use xlink:href="#E505-MJMAIN-3D" x="1612" y="0"></use><use xlink:href="#E505-MJMAIN-30" x="2640" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-495">\begin{align*}
& J(\theta) = \dfrac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) \\
& \mathrm{Cost}(h_\theta(x),y) = -\log(h_\theta(x)) \; & \text{if y = 1} \\
& \mathrm{Cost}(h_\theta(x),y) = -\log(1-h_\theta(x)) \; & \text{if y = 0}
\end{align*}</script></div></div><p><span>则有关于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span> 的图像如下:</span></p><p><img src="images/20180111_080614.png" referrerpolicy="no-referrer"></p><p><span>如左图,当训练集的结果为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E217-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E217-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E217-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E217-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E217-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E217-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y=1</script><span>(正样本)时,随着假设函数趋向于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.877ex" viewBox="0 -755.9 500 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E218-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E218-MJMAIN-31" x="0" y="0"></use></g></svg></span><script type="math/tex">1</script><span>,代价函数的值会趋于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.994ex" viewBox="0 -755.9 500 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E50-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E50-MJMAIN-30" x="0" y="0"></use></g></svg></span><script type="math/tex">0</script><span>,即意味着拟合程度很好。如果假设函数此时趋于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.994ex" viewBox="0 -755.9 500 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E50-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E50-MJMAIN-30" x="0" y="0"></use></g></svg></span><script type="math/tex">0</script><span>,则会给出一个</span><strong><span>很高的代价</span></strong><span>,拟合程度</span><strong><span>差</span></strong><span>,算法会根据其迅速纠正 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span> 值,右图 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E219-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E219-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E219-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E219-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E219-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E219-MJMAIN-30" x="1830" y="0"></use></g></svg></span><script type="math/tex">y=0</script><span> 同理。</span></p><p><span>区别于平方损失函数,对数损失函数也是一个凸函数,但没有局部最优值。</span></p><h2><a name="65-简化的成本函数和梯度下降simplified-cost-function-and-gradient-descent" class="md-header-anchor"></a><span>6.5 简化的成本函数和梯度下降(Simplified Cost Function and Gradient Descent)</span></h2><p><span>由于懒得分类讨论,对于二元分类问题,我们可把代价函数</span><strong><span>简化</span></strong><span>为一个函数: </span>
<span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="62.97ex" height="2.577ex" viewBox="0 -806.1 27112 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E220-MJMATHI-43" d="M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q484 659 454 652T382 628T299 572T226 479Q194 422 175 346T156 222Q156 108 232 58Q280 24 350 24Q441 24 512 92T606 240Q610 253 612 255T628 257Q648 257 648 248Q648 243 647 239Q618 132 523 55T319 -22Q206 -22 128 53T50 252Z"></path><path stroke-width="0" id="E220-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E220-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E220-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E220-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E220-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E220-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E220-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E220-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E220-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E220-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E220-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E220-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E220-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E220-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E220-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E220-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E220-MJMATHI-43" x="0" y="0"></use><use xlink:href="#E220-MJMATHI-6F" x="760" y="0"></use><use xlink:href="#E220-MJMATHI-73" x="1245" y="0"></use><use xlink:href="#E220-MJMATHI-74" x="1714" y="0"></use><g transform="translate(2241,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E220-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E220-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(1563,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E220-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E220-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E220-MJMAIN-2C" x="3079" y="0"></use><use xlink:href="#E220-MJMATHI-79" x="3524" y="0"></use><use xlink:href="#E220-MJMAIN-29" x="4021" y="0"></use></g><use xlink:href="#E220-MJMAIN-3D" x="6930" y="0"></use><use xlink:href="#E220-MJMAIN-2212" x="7985" y="0"></use><use xlink:href="#E220-MJMATHI-79" x="8763" y="0"></use><use xlink:href="#E220-MJMAIN-D7" x="9483" y="0"></use><use xlink:href="#E220-MJMATHI-6C" x="10483" y="0"></use><use xlink:href="#E220-MJMATHI-6F" x="10781" y="0"></use><use xlink:href="#E220-MJMATHI-67" x="11266" y="0"></use><g transform="translate(11912,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E220-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E220-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(1563,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E220-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E220-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E220-MJMAIN-29" x="2913" y="0"></use></g><use xlink:href="#E220-MJMAIN-2212" x="15437" y="0"></use><use xlink:href="#E220-MJMAIN-28" x="16437" y="0"></use><use xlink:href="#E220-MJMAIN-31" x="16826" y="0"></use><use xlink:href="#E220-MJMAIN-2212" x="17548" y="0"></use><use xlink:href="#E220-MJMATHI-79" x="18549" y="0"></use><use xlink:href="#E220-MJMAIN-29" x="19046" y="0"></use><use xlink:href="#E220-MJMAIN-D7" x="19657" y="0"></use><use xlink:href="#E220-MJMATHI-6C" x="20657" y="0"></use><use xlink:href="#E220-MJMATHI-6F" x="20955" y="0"></use><use xlink:href="#E220-MJMATHI-67" x="21440" y="0"></use><g transform="translate(22087,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E220-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E220-MJMAIN-2212" x="1111" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E220-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E220-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(3285,0)"><use xlink:href="#E220-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E220-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E220-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E220-MJMAIN-29" x="4635" y="0"></use></g></g></svg></span><script type="math/tex">Cost\left( {h_\theta}\left( x \right),y \right)=-y\times log\left( {h_\theta}\left( x \right) \right)-(1-y)\times log\left( 1-{h_\theta}\left( x \right) \right)</script></p><p><span>当 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E221-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E221-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E221-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E221-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E221-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E221-MJMAIN-30" x="1830" y="0"></use></g></svg></span><script type="math/tex">y = 0</script><span>,左边式子整体为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.994ex" viewBox="0 -755.9 500 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E50-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E50-MJMAIN-30" x="0" y="0"></use></g></svg></span><script type="math/tex">0</script><span>,当 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.413ex" height="2.461ex" viewBox="0 -755.9 2330.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E222-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E222-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E222-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E222-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E222-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E222-MJMAIN-31" x="1830" y="0"></use></g></svg></span><script type="math/tex">y = 1</script><span>,则 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.413ex" height="2.461ex" viewBox="0 -755.9 4053 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E223-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E223-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E223-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E223-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E223-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E223-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E223-MJMAIN-2212" x="722" y="0"></use><use xlink:href="#E223-MJMATHI-79" x="1722" y="0"></use><use xlink:href="#E223-MJMAIN-3D" x="2497" y="0"></use><use xlink:href="#E223-MJMAIN-30" x="3553" y="0"></use></g></svg></span><script type="math/tex">1-y=0</script><span>,右边式子整体为0,也就和上面的分段函数一样了,而一个式子计算起来更方便。</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="61.13ex" height="6.78ex" viewBox="0 -1660.6 26319.6 2919" role="img" focusable="false" style="vertical-align: -2.923ex;"><defs><path stroke-width="0" id="E224-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E224-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E224-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E224-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E224-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E224-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E224-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E224-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E224-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E224-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E224-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E224-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E224-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E224-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E224-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E224-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E224-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E224-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E224-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E224-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E224-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E224-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E224-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E224-MJMAIN-3D" x="2157" y="0"></use><use xlink:href="#E224-MJMAIN-2212" x="3213" y="0"></use><g transform="translate(3991,0)"><g transform="translate(120,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-31" x="273" y="571"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-6D" x="84" y="-488"></use></g></g><g transform="translate(5139,0)"><use xlink:href="#E224-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-6D" x="582" y="1626"></use><use xlink:href="#E224-MJMAIN-5B" x="1444" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E224-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(3281,0)"><use xlink:href="#E224-MJMAIN-6C"></use><use xlink:href="#E224-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E224-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E224-MJMAIN-28" x="4559" y="0"></use><g transform="translate(4948,0)"><use xlink:href="#E224-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E224-MJMAIN-28" x="5956" y="0"></use><g transform="translate(6345,0)"><use xlink:href="#E224-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E224-MJMAIN-29" x="7811" y="0"></use><use xlink:href="#E224-MJMAIN-29" x="8200" y="0"></use><use xlink:href="#E224-MJMAIN-2B" x="8811" y="0"></use><use xlink:href="#E224-MJMAIN-28" x="9812" y="0"></use><use xlink:href="#E224-MJMAIN-31" x="10201" y="0"></use><use xlink:href="#E224-MJMAIN-2212" x="10923" y="0"></use><g transform="translate(11923,0)"><use xlink:href="#E224-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E224-MJMAIN-29" x="13316" y="0"></use><g transform="translate(13872,0)"><use xlink:href="#E224-MJMAIN-6C"></use><use xlink:href="#E224-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E224-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E224-MJMAIN-28" x="15150" y="0"></use><use xlink:href="#E224-MJMAIN-31" x="15539" y="0"></use><use xlink:href="#E224-MJMAIN-2212" x="16261" y="0"></use><g transform="translate(17261,0)"><use xlink:href="#E224-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E224-MJMAIN-28" x="18269" y="0"></use><g transform="translate(18658,0)"><use xlink:href="#E224-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E224-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E224-MJMAIN-29" x="20124" y="0"></use><use xlink:href="#E224-MJMAIN-29" x="20513" y="0"></use><use xlink:href="#E224-MJMAIN-5D" x="20902" y="0"></use></g></g></svg></span><script type="math/tex">J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))]</script></p><p><span>向量化实现:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.425ex" height="2.577ex" viewBox="0 -806.1 4488.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E225-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E225-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E225-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E225-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E225-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E225-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E225-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E225-MJMATHI-68" x="0" y="0"></use><use xlink:href="#E225-MJMAIN-3D" x="853" y="0"></use><use xlink:href="#E225-MJMATHI-67" x="1909" y="0"></use><use xlink:href="#E225-MJMAIN-28" x="2389" y="0"></use><use xlink:href="#E225-MJMATHI-58" x="2778" y="0"></use><use xlink:href="#E225-MJMATHI-3B8" x="3630" y="0"></use><use xlink:href="#E225-MJMAIN-29" x="4099" y="0"></use></g></svg></span><script type="math/tex">h = g(X\theta)</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="46.092ex" height="3.278ex" viewBox="0 -956.9 19845.3 1411.3" role="img" focusable="false" style="vertical-align: -1.055ex;"><defs><path stroke-width="0" id="E226-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E226-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E226-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E226-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E226-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E226-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E226-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E226-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E226-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E226-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E226-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E226-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E226-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E226-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E226-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E226-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E226-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E226-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E226-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E226-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E226-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E226-MJMAIN-3D" x="2157" y="0"></use><g transform="translate(2935,0)"><g transform="translate(397,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E226-MJMAIN-31" x="273" y="571"></use><use transform="scale(0.707)" xlink:href="#E226-MJMATHI-6D" x="84" y="-488"></use></g></g><use xlink:href="#E226-MJMAIN-22C5" x="4416" y="0"></use><g transform="translate(4916,0)"><use xlink:href="#E226-MJSZ1-28"></use><use xlink:href="#E226-MJMAIN-2212" x="458" y="0"></use><g transform="translate(1236,0)"><use xlink:href="#E226-MJMATHI-79" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E226-MJMATHI-54" x="705" y="513"></use></g><g transform="translate(2499,0)"><use xlink:href="#E226-MJMAIN-6C"></use><use xlink:href="#E226-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E226-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E226-MJMAIN-28" x="3777" y="0"></use><use xlink:href="#E226-MJMATHI-68" x="4166" y="0"></use><use xlink:href="#E226-MJMAIN-29" x="4742" y="0"></use><use xlink:href="#E226-MJMAIN-2212" x="5353" y="0"></use><use xlink:href="#E226-MJMAIN-28" x="6354" y="0"></use><use xlink:href="#E226-MJMAIN-31" x="6743" y="0"></use><use xlink:href="#E226-MJMAIN-2212" x="7465" y="0"></use><use xlink:href="#E226-MJMATHI-79" x="8465" y="0"></use><g transform="translate(8962,0)"><use xlink:href="#E226-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E226-MJMATHI-54" x="550" y="513"></use></g><g transform="translate(10115,0)"><use xlink:href="#E226-MJMAIN-6C"></use><use xlink:href="#E226-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E226-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E226-MJMAIN-28" x="11393" y="0"></use><use xlink:href="#E226-MJMAIN-31" x="11782" y="0"></use><use xlink:href="#E226-MJMAIN-2212" x="12505" y="0"></use><use xlink:href="#E226-MJMATHI-68" x="13505" y="0"></use><use xlink:href="#E226-MJMAIN-29" x="14081" y="0"></use><use xlink:href="#E226-MJSZ1-29" x="14470" y="-1"></use></g></g></svg></span><script type="math/tex">J(\theta) = \frac{1}{m} \cdot \left(-y^{T}\log(h)-(1-y)^{T}\log(1-h)\right)</script></p><p>&nbsp;</p><p><span>为了最优化 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span>,仍使用梯度下降法,算法同线性回归中一致:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n84" cid="n84" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-496-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="29.62ex" height="12.149ex" viewBox="0 -2866.8 12752.9 5231" role="img" focusable="false" style="vertical-align: -5.491ex; max-width: 100%;"><defs><path stroke-width="0" id="E506-MJMAIN-52" d="M130 622Q123 629 119 631T103 634T60 637H27V683H202H236H300Q376 683 417 677T500 648Q595 600 609 517Q610 512 610 501Q610 468 594 439T556 392T511 361T472 343L456 338Q459 335 467 332Q497 316 516 298T545 254T559 211T568 155T578 94Q588 46 602 31T640 16H645Q660 16 674 32T692 87Q692 98 696 101T712 105T728 103T732 90Q732 59 716 27T672 -16Q656 -22 630 -22Q481 -16 458 90Q456 101 456 163T449 246Q430 304 373 320L363 322L297 323H231V192L232 61Q238 51 249 49T301 46H334V0H323Q302 3 181 3Q59 3 38 0H27V46H60Q102 47 111 49T130 61V622ZM491 499V509Q491 527 490 539T481 570T462 601T424 623T362 636Q360 636 340 636T304 637H283Q238 637 234 628Q231 624 231 492V360H289Q390 360 434 378T489 456Q491 467 491 499Z"></path><path stroke-width="0" id="E506-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E506-MJMAIN-70" d="M36 -148H50Q89 -148 97 -134V-126Q97 -119 97 -107T97 -77T98 -38T98 6T98 55T98 106Q98 140 98 177T98 243T98 296T97 335T97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 61 434T98 436Q115 437 135 438T165 441T176 442H179V416L180 390L188 397Q247 441 326 441Q407 441 464 377T522 216Q522 115 457 52T310 -11Q242 -11 190 33L182 40V-45V-101Q182 -128 184 -134T195 -145Q216 -148 244 -148H260V-194H252L228 -193Q205 -192 178 -192T140 -191Q37 -191 28 -194H20V-148H36ZM424 218Q424 292 390 347T305 402Q234 402 182 337V98Q222 26 294 26Q345 26 384 80T424 218Z"></path><path stroke-width="0" id="E506-MJMAIN-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path stroke-width="0" id="E506-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E506-MJMAIN-75" d="M383 58Q327 -10 256 -10H249Q124 -10 105 89Q104 96 103 226Q102 335 102 348T96 369Q86 385 36 385H25V408Q25 431 27 431L38 432Q48 433 67 434T105 436Q122 437 142 438T172 441T184 442H187V261Q188 77 190 64Q193 49 204 40Q224 26 264 26Q290 26 311 35T343 58T363 90T375 120T379 144Q379 145 379 161T380 201T380 248V315Q380 361 370 372T320 385H302V431Q304 431 378 436T457 442H464V264Q464 84 465 81Q468 61 479 55T524 46H542V0Q540 0 467 -5T390 -11H383V58Z"></path><path stroke-width="0" id="E506-MJMAIN-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E506-MJMAIN-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path stroke-width="0" id="E506-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E506-MJMAIN-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path stroke-width="0" id="E506-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E506-MJMAIN-76" d="M338 431Q344 429 422 429Q479 429 503 431H508V385H497Q439 381 423 345Q421 341 356 172T288 -2Q283 -11 263 -11Q244 -11 239 -2Q99 359 98 364Q93 378 82 381T43 385H19V431H25L33 430Q41 430 53 430T79 430T104 429T122 428Q217 428 232 431H240V385H226Q187 384 184 370Q184 366 235 234L286 102L377 341V349Q377 363 367 372T349 383T335 385H331V431H338Z"></path><path stroke-width="0" id="E506-MJMAIN-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path stroke-width="0" id="E506-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E506-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E506-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E506-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E506-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E506-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E506-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E506-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E506-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E506-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E506-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E506-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E506-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><use xlink:href="#E506-MJMAIN-7D" x="0" y="-2036"></use></g><g transform="translate(485,0)"><g transform="translate(0,1985)"><use xlink:href="#E506-MJMAIN-52"></use><use xlink:href="#E506-MJMAIN-65" x="736" y="0"></use><use xlink:href="#E506-MJMAIN-70" x="1180" y="0"></use><use xlink:href="#E506-MJMAIN-65" x="1736" y="0"></use><use xlink:href="#E506-MJMAIN-61" x="2180" y="0"></use><use xlink:href="#E506-MJMAIN-74" x="2680" y="0"></use><use xlink:href="#E506-MJMAIN-75" x="3319" y="0"></use><use xlink:href="#E506-MJMAIN-6E" x="3875" y="0"></use><use xlink:href="#E506-MJMAIN-74" x="4431" y="0"></use><use xlink:href="#E506-MJMAIN-69" x="4820" y="0"></use><use xlink:href="#E506-MJMAIN-6C" x="5098" y="0"></use><use xlink:href="#E506-MJMAIN-63" x="5626" y="0"></use><use xlink:href="#E506-MJMAIN-6F" x="6070" y="0"></use><use xlink:href="#E506-MJMAIN-6E" x="6570" y="0"></use><use xlink:href="#E506-MJMAIN-76" x="7126" y="0"></use><use xlink:href="#E506-MJMAIN-65" x="7654" y="0"></use><use xlink:href="#E506-MJMAIN-72" x="8098" y="0"></use><use xlink:href="#E506-MJMAIN-67" x="8490" y="0"></use><use xlink:href="#E506-MJMAIN-65" x="8990" y="0"></use><use xlink:href="#E506-MJMAIN-6E" x="9434" y="0"></use><use xlink:href="#E506-MJMAIN-63" x="9990" y="0"></use><use xlink:href="#E506-MJMAIN-65" x="10434" y="0"></use><use xlink:href="#E506-MJMAIN-3A" x="10878" y="0"></use><use xlink:href="#E506-MJMAIN-7B" x="11433" y="0"></use></g><g transform="translate(0,44)"><use xlink:href="#E506-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E506-MJMATHI-6A" x="663" y="-213"></use><g transform="translate(1138,0)"><use xlink:href="#E506-MJMAIN-3A"></use><use xlink:href="#E506-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(2471,0)"><use xlink:href="#E506-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E506-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E506-MJMAIN-2212" x="3554" y="0"></use><use xlink:href="#E506-MJMATHI-3B1" x="4554" y="0"></use><g transform="translate(5194,0)"><g transform="translate(120,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E506-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E506-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E506-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E506-MJMATHI-6A" x="663" y="-213"></use></g></g></g></g><use xlink:href="#E506-MJMATHI-4A" x="6981" y="0"></use><g transform="translate(7781,0)"><use xlink:href="#E506-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E506-MJMATHI-3B8" x="389" y="0"></use><use xlink:href="#E506-MJMAIN-29" x="858" y="0"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-496">\begin{align*}
& \text{Repeat until convergence:} \; \lbrace \\
&{{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta} \right) \\
\rbrace
\end{align*}</script></div></div><p><span>解出偏导得:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n86" cid="n86" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-497-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="60.276ex" height="13.083ex" viewBox="0 -3067.8 25952.1 5633" role="img" focusable="false" style="vertical-align: -5.958ex; max-width: 100%;"><defs><path stroke-width="0" id="E507-MJMAIN-52" d="M130 622Q123 629 119 631T103 634T60 637H27V683H202H236H300Q376 683 417 677T500 648Q595 600 609 517Q610 512 610 501Q610 468 594 439T556 392T511 361T472 343L456 338Q459 335 467 332Q497 316 516 298T545 254T559 211T568 155T578 94Q588 46 602 31T640 16H645Q660 16 674 32T692 87Q692 98 696 101T712 105T728 103T732 90Q732 59 716 27T672 -16Q656 -22 630 -22Q481 -16 458 90Q456 101 456 163T449 246Q430 304 373 320L363 322L297 323H231V192L232 61Q238 51 249 49T301 46H334V0H323Q302 3 181 3Q59 3 38 0H27V46H60Q102 47 111 49T130 61V622ZM491 499V509Q491 527 490 539T481 570T462 601T424 623T362 636Q360 636 340 636T304 637H283Q238 637 234 628Q231 624 231 492V360H289Q390 360 434 378T489 456Q491 467 491 499Z"></path><path stroke-width="0" id="E507-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E507-MJMAIN-70" d="M36 -148H50Q89 -148 97 -134V-126Q97 -119 97 -107T97 -77T98 -38T98 6T98 55T98 106Q98 140 98 177T98 243T98 296T97 335T97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 61 434T98 436Q115 437 135 438T165 441T176 442H179V416L180 390L188 397Q247 441 326 441Q407 441 464 377T522 216Q522 115 457 52T310 -11Q242 -11 190 33L182 40V-45V-101Q182 -128 184 -134T195 -145Q216 -148 244 -148H260V-194H252L228 -193Q205 -192 178 -192T140 -191Q37 -191 28 -194H20V-148H36ZM424 218Q424 292 390 347T305 402Q234 402 182 337V98Q222 26 294 26Q345 26 384 80T424 218Z"></path><path stroke-width="0" id="E507-MJMAIN-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path stroke-width="0" id="E507-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E507-MJMAIN-75" d="M383 58Q327 -10 256 -10H249Q124 -10 105 89Q104 96 103 226Q102 335 102 348T96 369Q86 385 36 385H25V408Q25 431 27 431L38 432Q48 433 67 434T105 436Q122 437 142 438T172 441T184 442H187V261Q188 77 190 64Q193 49 204 40Q224 26 264 26Q290 26 311 35T343 58T363 90T375 120T379 144Q379 145 379 161T380 201T380 248V315Q380 361 370 372T320 385H302V431Q304 431 378 436T457 442H464V264Q464 84 465 81Q468 61 479 55T524 46H542V0Q540 0 467 -5T390 -11H383V58Z"></path><path stroke-width="0" id="E507-MJMAIN-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E507-MJMAIN-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path stroke-width="0" id="E507-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E507-MJMAIN-63" d="M370 305T349 305T313 320T297 358Q297 381 312 396Q317 401 317 402T307 404Q281 408 258 408Q209 408 178 376Q131 329 131 219Q131 137 162 90Q203 29 272 29Q313 29 338 55T374 117Q376 125 379 127T395 129H409Q415 123 415 120Q415 116 411 104T395 71T366 33T318 2T249 -11Q163 -11 99 53T34 214Q34 318 99 383T250 448T370 421T404 357Q404 334 387 320Z"></path><path stroke-width="0" id="E507-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E507-MJMAIN-76" d="M338 431Q344 429 422 429Q479 429 503 431H508V385H497Q439 381 423 345Q421 341 356 172T288 -2Q283 -11 263 -11Q244 -11 239 -2Q99 359 98 364Q93 378 82 381T43 385H19V431H25L33 430Q41 430 53 430T79 430T104 429T122 428Q217 428 232 431H240V385H226Q187 384 184 370Q184 366 235 234L286 102L377 341V349Q377 363 367 372T349 383T335 385H331V431H338Z"></path><path stroke-width="0" id="E507-MJMAIN-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path stroke-width="0" id="E507-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E507-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E507-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E507-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E507-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E507-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E507-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E507-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E507-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E507-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E507-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E507-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E507-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E507-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E507-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E507-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E507-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E507-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E507-MJMAIN-66" d="M273 0Q255 3 146 3Q43 3 34 0H26V46H42Q70 46 91 49Q99 52 103 60Q104 62 104 224V385H33V431H104V497L105 564L107 574Q126 639 171 668T266 704Q267 704 275 704T289 705Q330 702 351 679T372 627Q372 604 358 590T321 576T284 590T270 627Q270 647 288 667H284Q280 668 273 668Q245 668 223 647T189 592Q183 572 182 497V431H293V385H185V225Q185 63 186 61T189 57T194 54T199 51T206 49T213 48T222 47T231 47T241 46T251 46H282V0H273Z"></path><path stroke-width="0" id="E507-MJMAIN-6A" d="M98 609Q98 637 116 653T160 669Q183 667 200 652T217 609Q217 579 200 564T158 549Q133 549 116 564T98 609ZM28 -163Q58 -168 64 -168Q124 -168 135 -77Q137 -65 137 141T136 353Q132 371 120 377T72 385H52V408Q52 431 54 431L58 432Q62 432 70 432T87 433T108 434T133 436Q151 437 171 438T202 441T214 442H218V184Q217 -36 217 -59T211 -98Q195 -145 153 -175T58 -205Q9 -205 -23 -179T-55 -117Q-55 -94 -40 -79T-2 -64T36 -79T52 -118Q52 -143 28 -163Z"></path><path stroke-width="0" id="E507-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E507-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E507-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E507-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><use xlink:href="#E507-MJMAIN-7D" x="0" y="-2230"></use></g><g transform="translate(485,0)"><g transform="translate(0,2179)"><use xlink:href="#E507-MJMAIN-52"></use><use xlink:href="#E507-MJMAIN-65" x="736" y="0"></use><use xlink:href="#E507-MJMAIN-70" x="1180" y="0"></use><use xlink:href="#E507-MJMAIN-65" x="1736" y="0"></use><use xlink:href="#E507-MJMAIN-61" x="2180" y="0"></use><use xlink:href="#E507-MJMAIN-74" x="2680" y="0"></use><use xlink:href="#E507-MJMAIN-75" x="3319" y="0"></use><use xlink:href="#E507-MJMAIN-6E" x="3875" y="0"></use><use xlink:href="#E507-MJMAIN-74" x="4431" y="0"></use><use xlink:href="#E507-MJMAIN-69" x="4820" y="0"></use><use xlink:href="#E507-MJMAIN-6C" x="5098" y="0"></use><use xlink:href="#E507-MJMAIN-63" x="5626" y="0"></use><use xlink:href="#E507-MJMAIN-6F" x="6070" y="0"></use><use xlink:href="#E507-MJMAIN-6E" x="6570" y="0"></use><use xlink:href="#E507-MJMAIN-76" x="7126" y="0"></use><use xlink:href="#E507-MJMAIN-65" x="7654" y="0"></use><use xlink:href="#E507-MJMAIN-72" x="8098" y="0"></use><use xlink:href="#E507-MJMAIN-67" x="8490" y="0"></use><use xlink:href="#E507-MJMAIN-65" x="8990" y="0"></use><use xlink:href="#E507-MJMAIN-6E" x="9434" y="0"></use><use xlink:href="#E507-MJMAIN-63" x="9990" y="0"></use><use xlink:href="#E507-MJMAIN-65" x="10434" y="0"></use><use xlink:href="#E507-MJMAIN-3A" x="10878" y="0"></use><use xlink:href="#E507-MJMAIN-7B" x="11433" y="0"></use></g><g transform="translate(0,66)"><use xlink:href="#E507-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-6A" x="663" y="-213"></use><g transform="translate(1138,0)"><use xlink:href="#E507-MJMAIN-3A"></use><use xlink:href="#E507-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(2471,0)"><use xlink:href="#E507-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E507-MJMAIN-2212" x="3554" y="0"></use><use xlink:href="#E507-MJMATHI-3B1" x="4554" y="0"></use><g transform="translate(5194,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E507-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E507-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(6599,0)"><use xlink:href="#E507-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E507-MJMAIN-28" x="8043" y="0"></use><g transform="translate(8432,0)"><use xlink:href="#E507-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E507-MJMAIN-28" x="9439" y="0"></use><g transform="translate(9828,0)"><use xlink:href="#E507-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E507-MJMAIN-29" x="11295" y="0"></use><use xlink:href="#E507-MJMAIN-2212" x="11906" y="0"></use><g transform="translate(12906,0)"><use xlink:href="#E507-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E507-MJMAIN-29" x="14299" y="0"></use><use xlink:href="#E507-MJMAIN-22C5" x="14910" y="0"></use><g transform="translate(15411,0)"><use xlink:href="#E507-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E507-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E507-MJMATHI-6A" x="808" y="-429"></use></g></g></g><g transform="translate(19640,0)"><g transform="translate(0,66)"><use xlink:href="#E507-MJMAIN-66"></use><use xlink:href="#E507-MJMAIN-6F" x="306" y="0"></use><use xlink:href="#E507-MJMAIN-72" x="806" y="0"></use><use xlink:href="#E507-MJMAIN-6A" x="1448" y="0"></use><use xlink:href="#E507-MJMAIN-3A" x="2004" y="0"></use><use xlink:href="#E507-MJMAIN-3D" x="2282" y="0"></use><use xlink:href="#E507-MJMAIN-30" x="3310" y="0"></use><use xlink:href="#E507-MJMAIN-2C" x="3810" y="0"></use><use xlink:href="#E507-MJMAIN-31" x="4088" y="0"></use><use xlink:href="#E507-MJMAIN-2E" x="4588" y="0"></use><use xlink:href="#E507-MJMAIN-2E" x="4866" y="0"></use><use xlink:href="#E507-MJMAIN-2E" x="5144" y="0"></use><use xlink:href="#E507-MJMAIN-6E" x="5422" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-497">\begin{align*}
& \text{Repeat until convergence:} \; \lbrace \\
& \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \; & \text{for j := 0,1...n}\\
\rbrace
\end{align*}</script></div></div><p><span>注意,虽然形式上梯度下降算法同线性回归一样,但其中的假设函不同,即</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="16.009ex" height="3.044ex" viewBox="0 -906.7 6892.7 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E227-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E227-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E227-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E227-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E227-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E227-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E227-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E227-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E227-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E227-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E227-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E227-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E227-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E227-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E227-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E227-MJMAIN-3D" x="2635" y="0"></use><use xlink:href="#E227-MJMATHI-67" x="3691" y="0"></use><g transform="translate(4337,0)"><use xlink:href="#E227-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E227-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E227-MJMATHI-54" x="663" y="513"></use></g><use xlink:href="#E227-MJMATHI-78" x="1524" y="0"></use><use xlink:href="#E227-MJSZ1-29" x="2096" y="-1"></use></g></g></svg></span><script type="math/tex">h_\theta(x) = g\left(\theta^{T}x \right)</script><span>,不过求导后的结果也相同。</span></p><p><span>向量化实现:</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="26.214ex" height="3.161ex" viewBox="0 -906.7 11286.3 1361" role="img" focusable="false" style="vertical-align: -1.055ex;"><defs><path stroke-width="0" id="E228-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E228-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E228-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E228-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E228-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E228-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E228-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E228-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E228-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E228-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E228-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E228-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E228-MJMATHI-3B8" x="0" y="0"></use><g transform="translate(746,0)"><use xlink:href="#E228-MJMAIN-3A"></use><use xlink:href="#E228-MJMAIN-3D" x="278" y="0"></use></g><use xlink:href="#E228-MJMATHI-3B8" x="2080" y="0"></use><use xlink:href="#E228-MJMAIN-2212" x="2771" y="0"></use><g transform="translate(3549,0)"><g transform="translate(342,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E228-MJMATHI-3B1" x="203" y="582"></use><use transform="scale(0.707)" xlink:href="#E228-MJMATHI-6D" x="84" y="-488"></use></g></g><g transform="translate(4752,0)"><use xlink:href="#E228-MJMATHI-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E228-MJMATHI-54" x="1215" y="513"></use></g><use xlink:href="#E228-MJMAIN-28" x="6209" y="0"></use><use xlink:href="#E228-MJMATHI-67" x="6598" y="0"></use><use xlink:href="#E228-MJMAIN-28" x="7078" y="0"></use><use xlink:href="#E228-MJMATHI-58" x="7467" y="0"></use><use xlink:href="#E228-MJMATHI-3B8" x="8319" y="0"></use><use xlink:href="#E228-MJMAIN-29" x="8788" y="0"></use><use xlink:href="#E228-MJMAIN-2212" x="9400" y="0"></use><use xlink:href="#E228-MJMATHI-79" x="10400" y="0"></use><use xlink:href="#E228-MJMAIN-29" x="10897" y="0"></use></g></svg></span><script type="math/tex">\theta := \theta - \frac{\alpha}{m} X^{T} (g(X \theta ) - y)</script></p><p>&nbsp;</p><p><strong><span>逻辑回归中代价函数求导的推导过程:</span></strong><a href=''></a></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n91" cid="n91" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-498-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="61.727ex" height="6.78ex" viewBox="0 -1660.6 26576.8 2919" role="img" focusable="false" style="vertical-align: -2.923ex; max-width: 100%;"><defs><path stroke-width="0" id="E508-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E508-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E508-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E508-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E508-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E508-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E508-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E508-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E508-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E508-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E508-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E508-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E508-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E508-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E508-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E508-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E508-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E508-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E508-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E508-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E508-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E508-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E508-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E508-MJMAIN-3D" x="2157" y="0"></use><use xlink:href="#E508-MJMAIN-2212" x="3213" y="0"></use><g transform="translate(3991,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E508-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E508-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(5396,0)"><use xlink:href="#E508-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-6D" x="582" y="1626"></use><use xlink:href="#E508-MJMAIN-5B" x="1444" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E508-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(3281,0)"><use xlink:href="#E508-MJMAIN-6C"></use><use xlink:href="#E508-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E508-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E508-MJMAIN-28" x="4559" y="0"></use><g transform="translate(4948,0)"><use xlink:href="#E508-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E508-MJMAIN-28" x="5956" y="0"></use><g transform="translate(6345,0)"><use xlink:href="#E508-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E508-MJMAIN-29" x="7811" y="0"></use><use xlink:href="#E508-MJMAIN-29" x="8200" y="0"></use><use xlink:href="#E508-MJMAIN-2B" x="8811" y="0"></use><use xlink:href="#E508-MJMAIN-28" x="9812" y="0"></use><use xlink:href="#E508-MJMAIN-31" x="10201" y="0"></use><use xlink:href="#E508-MJMAIN-2212" x="10923" y="0"></use><g transform="translate(11923,0)"><use xlink:href="#E508-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E508-MJMAIN-29" x="13316" y="0"></use><g transform="translate(13872,0)"><use xlink:href="#E508-MJMAIN-6C"></use><use xlink:href="#E508-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E508-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E508-MJMAIN-28" x="15150" y="0"></use><use xlink:href="#E508-MJMAIN-31" x="15539" y="0"></use><use xlink:href="#E508-MJMAIN-2212" x="16261" y="0"></use><g transform="translate(17261,0)"><use xlink:href="#E508-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E508-MJMAIN-28" x="18269" y="0"></use><g transform="translate(18658,0)"><use xlink:href="#E508-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E508-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E508-MJMAIN-29" x="20124" y="0"></use><use xlink:href="#E508-MJMAIN-29" x="20513" y="0"></use><use xlink:href="#E508-MJMAIN-5D" x="20902" y="0"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-498">J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))]</script></div></div><p><span>令 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="54.196ex" height="3.161ex" viewBox="0 -956.9 23334.4 1361" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E229-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E229-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E229-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E229-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E229-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E229-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E229-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E229-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E229-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E229-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E229-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E229-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E229-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E229-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path><path stroke-width="0" id="E229-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E229-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E229-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E229-MJMATHI-66" x="0" y="0"></use><use xlink:href="#E229-MJMAIN-28" x="550" y="0"></use><use xlink:href="#E229-MJMATHI-3B8" x="939" y="0"></use><use xlink:href="#E229-MJMAIN-29" x="1408" y="0"></use><use xlink:href="#E229-MJMAIN-3D" x="2074" y="0"></use><g transform="translate(3130,0)"><use xlink:href="#E229-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(4690,0)"><use xlink:href="#E229-MJMAIN-6C"></use><use xlink:href="#E229-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E229-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(5968,0)"><use xlink:href="#E229-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E229-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(1632,0)"><use xlink:href="#E229-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E229-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E229-MJSZ1-29" x="1924" y="-1"></use></g><use xlink:href="#E229-MJSZ1-29" x="4014" y="-1"></use></g><use xlink:href="#E229-MJMAIN-2B" x="10663" y="0"></use><g transform="translate(11663,0)"><use xlink:href="#E229-MJSZ1-28"></use><use xlink:href="#E229-MJMAIN-31" x="458" y="0"></use><use xlink:href="#E229-MJMAIN-2212" x="1180" y="0"></use><g transform="translate(2180,0)"><use xlink:href="#E229-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E229-MJSZ1-29" x="3573" y="-1"></use></g><g transform="translate(15861,0)"><use xlink:href="#E229-MJMAIN-6C"></use><use xlink:href="#E229-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E229-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(17139,0)"><use xlink:href="#E229-MJSZ1-28"></use><use xlink:href="#E229-MJMAIN-31" x="458" y="0"></use><use xlink:href="#E229-MJMAIN-2212" x="1180" y="0"></use><g transform="translate(2180,0)"><use xlink:href="#E229-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(3354,0)"><use xlink:href="#E229-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E229-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E229-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E229-MJSZ1-29" x="1924" y="-1"></use></g><use xlink:href="#E229-MJSZ1-29" x="5736" y="-1"></use></g></g></svg></span><script type="math/tex">f(\theta) = {{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)</script></p><p><span>忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.582ex" height="2.577ex" viewBox="0 -806.1 5417.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E230-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E230-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E230-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E230-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E230-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E230-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E230-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E230-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E230-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E230-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E230-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E230-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E230-MJMAIN-29" x="1968" y="0"></use><use xlink:href="#E230-MJMAIN-3D" x="2635" y="0"></use><use xlink:href="#E230-MJMATHI-67" x="3691" y="0"></use><use xlink:href="#E230-MJMAIN-28" x="4171" y="0"></use><use xlink:href="#E230-MJMATHI-7A" x="4560" y="0"></use><use xlink:href="#E230-MJMAIN-29" x="5028" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x) = g(z)</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.321ex" height="3.628ex" viewBox="0 -956.9 5735.5 1562" role="img" focusable="false" style="vertical-align: -1.405ex;"><defs><path stroke-width="0" id="E231-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E231-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E231-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E231-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E231-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E231-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E231-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E231-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E231-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E231-MJMATHI-67" x="0" y="0"></use><use xlink:href="#E231-MJMAIN-28" x="480" y="0"></use><use xlink:href="#E231-MJMATHI-7A" x="869" y="0"></use><use xlink:href="#E231-MJMAIN-29" x="1337" y="0"></use><use xlink:href="#E231-MJMAIN-3D" x="2003" y="0"></use><g transform="translate(2781,0)"><g transform="translate(397,0)"><rect stroke="none" width="2435" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-31" x="1472" y="571"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E231-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-2212" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMATHI-7A" x="1167" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-29" x="1635" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">g(z) = \frac{1}{1+e^{(-z)}}</script><span>,则</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n94" cid="n94" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-499-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="58.041ex" height="10.749ex" viewBox="0 -2565.2 24989.8 4627.8" role="img" focusable="false" style="vertical-align: -4.791ex; max-width: 100%;"><defs><path stroke-width="0" id="E509-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E509-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E509-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E509-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E509-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E509-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E509-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E509-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E509-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E509-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E509-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E509-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E509-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E509-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E509-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E509-MJSZ3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path stroke-width="0" id="E509-MJSZ3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path stroke-width="0" id="E509-MJSZ2-28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z"></path><path stroke-width="0" id="E509-MJSZ2-29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z"></path><path stroke-width="0" id="E509-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E509-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,1049)"><use xlink:href="#E509-MJMATHI-66" x="0" y="0"></use><use xlink:href="#E509-MJMAIN-28" x="550" y="0"></use><use xlink:href="#E509-MJMATHI-3B8" x="939" y="0"></use><use xlink:href="#E509-MJMAIN-29" x="1408" y="0"></use></g></g><g transform="translate(1782,0)"><g transform="translate(0,1049)"><use xlink:href="#E509-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E509-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(2893,0)"><use xlink:href="#E509-MJMAIN-6C"></use><use xlink:href="#E509-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E509-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(4171,0)"><use xlink:href="#E509-MJSZ3-28"></use><g transform="translate(736,0)"><g transform="translate(120,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><use xlink:href="#E509-MJMAIN-31" x="1394" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E509-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E509-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E509-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E509-MJSZ3-29" x="4265" y="-1"></use></g><use xlink:href="#E509-MJMAIN-2B" x="9395" y="0"></use><g transform="translate(10395,0)"><use xlink:href="#E509-MJSZ2-28"></use><use xlink:href="#E509-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E509-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E509-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E509-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(14871,0)"><use xlink:href="#E509-MJMAIN-6C"></use><use xlink:href="#E509-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E509-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(16149,0)"><use xlink:href="#E509-MJSZ3-28"></use><use xlink:href="#E509-MJMAIN-31" x="736" y="0"></use><use xlink:href="#E509-MJMAIN-2212" x="1458" y="0"></use><g transform="translate(2236,0)"><g transform="translate(342,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><use xlink:href="#E509-MJMAIN-31" x="1394" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E509-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E509-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E509-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E509-MJSZ3-29" x="5987" y="-1"></use></g></g><g transform="translate(0,-1350)"><use xlink:href="#E509-MJMAIN-3D" x="277" y="0"></use><use xlink:href="#E509-MJMAIN-2212" x="1333" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E509-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(3671,0)"><use xlink:href="#E509-MJMAIN-6C"></use><use xlink:href="#E509-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E509-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(4949,0)"><use xlink:href="#E509-MJSZ1-28"></use><use xlink:href="#E509-MJMAIN-31" x="458" y="0"></use><use xlink:href="#E509-MJMAIN-2B" x="1180" y="0"></use><g transform="translate(2180,0)"><use xlink:href="#E509-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,412)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-7A" x="778" y="0"></use></g></g><use xlink:href="#E509-MJSZ1-29" x="3627" y="-1"></use></g><use xlink:href="#E509-MJMAIN-2212" x="9257" y="0"></use><g transform="translate(10257,0)"><use xlink:href="#E509-MJSZ2-28"></use><use xlink:href="#E509-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E509-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E509-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E509-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(14733,0)"><use xlink:href="#E509-MJMAIN-6C"></use><use xlink:href="#E509-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E509-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(16011,0)"><use xlink:href="#E509-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E509-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E509-MJMAIN-2B" x="1111" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E509-MJMATHI-65" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E509-MJMATHI-7A" x="659" y="583"></use></g><use xlink:href="#E509-MJMAIN-29" x="3008" y="0"></use></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-499">\begin{align*}
f(\theta) &= {{y}^{(i)}}\log \left( \frac{1}{1+{{e}^{-z}}} \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-\frac{1}{1+{{e}^{-z}}} \right) \\
&= -{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)
\end{align*}</script></div></div><p><span>忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="10.067ex" height="2.461ex" viewBox="0 -956.9 4334.4 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E232-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E232-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E232-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E232-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E232-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E232-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E232-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E232-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E232-MJMATHI-7A" x="0" y="0"></use><use xlink:href="#E232-MJMAIN-3D" x="745" y="0"></use><g transform="translate(1801,0)"><use xlink:href="#E232-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E232-MJMATHI-54" x="663" y="513"></use></g><g transform="translate(2868,0)"><use xlink:href="#E232-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E232-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E232-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E232-MJMAIN-29" x="733" y="0"></use></g></g></g></svg></span><script type="math/tex">z=\theta^Tx^{(i)}</script><span>,对 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.998ex" height="2.694ex" viewBox="0 -806.1 860.3 1160" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E234-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E234-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E234-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E234-MJMATHI-6A" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_j</script><span> 求偏导,则没有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.998ex" height="2.694ex" viewBox="0 -806.1 860.3 1160" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E234-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E234-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E234-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E234-MJMATHI-6A" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_j</script><span> 的项求偏导即为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.994ex" viewBox="0 -755.9 500 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E50-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E50-MJMAIN-30" x="0" y="0"></use></g></svg></span><script type="math/tex">0</script><span>,都消去,则得:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n96" cid="n96" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-500-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="26.558ex" height="5.846ex" viewBox="0 -1459.5 11434.7 2517" role="img" focusable="false" style="vertical-align: -2.456ex; max-width: 100%;"><defs><path stroke-width="0" id="E510-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E510-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E510-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E510-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E510-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E510-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E510-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E510-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E510-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E510-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E510-MJSZ2-28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z"></path><path stroke-width="0" id="E510-MJSZ2-29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><g transform="translate(256,676)"><use xlink:href="#E510-MJMAIN-2202" x="0" y="0"></use><use xlink:href="#E510-MJMATHI-7A" x="567" y="0"></use></g><g transform="translate(60,-686)"><use xlink:href="#E510-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E510-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-6A" x="663" y="-213"></use></g></g></g><use xlink:href="#E510-MJMAIN-3D" x="2065" y="0"></use><g transform="translate(2843,0)"><g transform="translate(397,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E510-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E510-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E510-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-6A" x="663" y="-213"></use></g></g></g></g><g transform="translate(4908,0)"><use xlink:href="#E510-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E510-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-54" x="663" y="583"></use></g><g transform="translate(1663,0)"><use xlink:href="#E510-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E510-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E510-MJSZ2-29" x="3129" y="-1"></use></g><use xlink:href="#E510-MJMAIN-3D" x="8912" y="0"></use><g transform="translate(9968,0)"><use xlink:href="#E510-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E510-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E510-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E510-MJMATHI-6A" x="808" y="-429"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-500">\frac{\partial z}{\partial {\theta_{j}}}=\frac{\partial }{\partial {\theta_{j}}}\left( \theta^Tx^{(i)} \right)=x^{(i)}_j</script></div></div><p><span>所以有:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n98" cid="n98" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-501-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="59.975ex" height="55.573ex" viewBox="0 -12215 25822.5 23927.4" role="img" focusable="false" style="vertical-align: -27.203ex; max-width: 100%;"><defs><path stroke-width="0" id="E511-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E511-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E511-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E511-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E511-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E511-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E511-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E511-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E511-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E511-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E511-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E511-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E511-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E511-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E511-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E511-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E511-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E511-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E511-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E511-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path><path stroke-width="0" id="E511-MJSZ2-28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z"></path><path stroke-width="0" id="E511-MJSZ2-29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z"></path><path stroke-width="0" id="E511-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E511-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E511-MJSZ3-28" d="M701 -940Q701 -943 695 -949H664Q662 -947 636 -922T591 -879T537 -818T475 -737T412 -636T350 -511T295 -362T250 -186T221 17T209 251Q209 962 573 1361Q596 1386 616 1405T649 1437T664 1450H695Q701 1444 701 1441Q701 1436 681 1415T629 1356T557 1261T476 1118T400 927T340 675T308 359Q306 321 306 250Q306 -139 400 -430T690 -924Q701 -936 701 -940Z"></path><path stroke-width="0" id="E511-MJSZ3-29" d="M34 1438Q34 1446 37 1448T50 1450H56H71Q73 1448 99 1423T144 1380T198 1319T260 1238T323 1137T385 1013T440 864T485 688T514 485T526 251Q526 134 519 53Q472 -519 162 -860Q139 -885 119 -904T86 -936T71 -949H56Q43 -949 39 -947T34 -937Q88 -883 140 -813Q428 -430 428 251Q428 453 402 628T338 922T245 1146T145 1309T46 1425Q44 1427 42 1429T39 1433T36 1436L34 1438Z"></path><path stroke-width="0" id="E511-MJSZ4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path stroke-width="0" id="E511-MJSZ4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path stroke-width="0" id="E511-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,10754)"><g transform="translate(120,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E511-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E511-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="663" y="-213"></use></g></g></g><use xlink:href="#E511-MJMATHI-66" x="1787" y="0"></use><g transform="translate(2503,0)"><use xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E511-MJMATHI-3B8" x="389" y="0"></use><use xlink:href="#E511-MJMAIN-29" x="858" y="0"></use></g></g></g><g transform="translate(3736,0)"><g transform="translate(0,10754)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1055,0)"><g transform="translate(397,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E511-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E511-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="663" y="-213"></use></g></g></g></g><use xlink:href="#E511-MJMAIN-5B" x="3120" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="3398" y="0"></use><g transform="translate(4176,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(5736,0)"><use xlink:href="#E511-MJMAIN-6C"></use><use xlink:href="#E511-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E511-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(7014,0)"><use xlink:href="#E511-MJSZ1-28"></use><use xlink:href="#E511-MJMAIN-31" x="458" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="1180" y="0"></use><g transform="translate(2180,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g><use xlink:href="#E511-MJSZ1-29" x="3627" y="-1"></use></g><use xlink:href="#E511-MJMAIN-2212" x="11322" y="0"></use><g transform="translate(12322,0)"><use xlink:href="#E511-MJSZ2-28"></use><use xlink:href="#E511-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(16799,0)"><use xlink:href="#E511-MJMAIN-6C"></use><use xlink:href="#E511-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E511-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(18077,0)"><use xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="1111" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="659" y="583"></use></g><use xlink:href="#E511-MJMAIN-29" x="3008" y="0"></use></g><use xlink:href="#E511-MJMAIN-5D" x="21474" y="0"></use></g><g transform="translate(0,7465)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1333" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(3504,0)"><g transform="translate(120,0)"><rect stroke="none" width="5126" height="60" x="0" y="220"></rect><g transform="translate(60,1083)"><g transform="translate(120,0)"><rect stroke="none" width="1129" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2202" x="515" y="593"></use><g transform="translate(60,-410)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E511-MJMATHI-6A" x="663" y="-213"></use></g></g></g><g transform="translate(1369,0)"><use xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="389" y="0"></use><use xlink:href="#E511-MJMATHI-7A" x="1167" y="0"></use><use xlink:href="#E511-MJMAIN-29" x="1635" y="0"></use></g><g transform="translate(3559,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g><g transform="translate(978,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJMAIN-2212" x="9094" y="0"></use><g transform="translate(10094,0)"><use xlink:href="#E511-MJSZ2-28"></use><use xlink:href="#E511-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(14403,0)"><g transform="translate(286,0)"><rect stroke="none" width="3798" height="60" x="0" y="220"></rect><g transform="translate(60,1083)"><g transform="translate(120,0)"><rect stroke="none" width="1129" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2202" x="515" y="593"></use><g transform="translate(60,-410)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E511-MJMATHI-6A" x="663" y="-213"></use></g></g></g><g transform="translate(1369,0)"><use xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E511-MJMATHI-7A" x="389" y="0"></use><use xlink:href="#E511-MJMAIN-29" x="857" y="0"></use></g><g transform="translate(2781,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="659" y="513"></use></g></g><g transform="translate(589,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="659" y="408"></use></g></g></g></g></g><g transform="translate(0,4432)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1333" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(3504,0)"><g transform="translate(120,0)"><rect stroke="none" width="3811" height="60" x="0" y="220"></rect><g transform="translate(60,912)"><use xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><g transform="translate(778,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g><g transform="translate(2244,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g><g transform="translate(320,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJMAIN-2212" x="7778" y="0"></use><g transform="translate(8778,0)"><use xlink:href="#E511-MJSZ2-28"></use><use xlink:href="#E511-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(13088,0)"><g transform="translate(286,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><g transform="translate(911,912)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g></g><g transform="translate(0,1913)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E511-MJSZ3-28"></use><g transform="translate(736,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(2129,0)"><g transform="translate(120,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><g transform="translate(921,676)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJMAIN-2212" x="5880" y="0"></use><g transform="translate(6881,0)"><use xlink:href="#E511-MJSZ2-28"></use><use xlink:href="#E511-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(11190,0)"><g transform="translate(286,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><use xlink:href="#E511-MJMAIN-31" x="1394" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJSZ3-29" x="14887" y="-1"></use></g><g transform="translate(17123,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g><g transform="translate(0,-788)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E511-MJSZ3-28"></use><g transform="translate(736,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(2129,0)"><g transform="translate(120,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><g transform="translate(921,676)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJMAIN-2212" x="5880" y="0"></use><g transform="translate(6881,0)"><use xlink:href="#E511-MJSZ2-28"></use><use xlink:href="#E511-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="3712" y="-1"></use></g><g transform="translate(11190,0)"><g transform="translate(286,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><use xlink:href="#E511-MJMAIN-31" x="1394" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJSZ3-29" x="14887" y="-1"></use></g><g transform="translate(17123,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g><g transform="translate(0,-3788)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E511-MJSZ4-28"></use><g transform="translate(792,0)"><g transform="translate(120,0)"><rect stroke="none" width="7183" height="60" x="0" y="220"></rect><g transform="translate(60,715)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use xlink:href="#E511-MJMAIN-28" x="1393" y="0"></use><g transform="translate(1782,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g><use xlink:href="#E511-MJMAIN-2B" x="3451" y="0"></use><use xlink:href="#E511-MJMAIN-31" x="4451" y="0"></use><use xlink:href="#E511-MJMAIN-29" x="4951" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="5562" y="0"></use><use xlink:href="#E511-MJMAIN-31" x="6563" y="0"></use></g><g transform="translate(2006,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJSZ4-29" x="8215" y="0"></use></g><g transform="translate(10507,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g><g transform="translate(0,-6680)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJMAIN-2212" x="2004" y="0"></use><g transform="translate(2782,0)"><g transform="translate(342,0)"><rect stroke="none" width="3289" height="60" x="0" y="220"></rect><use xlink:href="#E511-MJMAIN-31" x="1394" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E511-MJMAIN-31" x="0" y="0"></use><use xlink:href="#E511-MJMAIN-2B" x="722" y="0"></use><g transform="translate(1722,0)"><use xlink:href="#E511-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,288)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E511-MJMAIN-29" x="6534" y="0"></use><g transform="translate(6923,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g></g><g transform="translate(0,-8898)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><g transform="translate(1333,0)"><use xlink:href="#E511-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJMAIN-2212" x="2212" y="0"></use><g transform="translate(3212,0)"><use xlink:href="#E511-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(4386,0)"><use xlink:href="#E511-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="2063" y="-1"></use></g><use xlink:href="#E511-MJSZ2-29" x="7047" y="-1"></use><g transform="translate(7810,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g></g><g transform="translate(0,-10997)"><use xlink:href="#E511-MJMAIN-3D" x="277" y="0"></use><use xlink:href="#E511-MJMAIN-2212" x="1333" y="0"></use><g transform="translate(2111,0)"><use xlink:href="#E511-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E511-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-3B8" x="814" y="-218"></use></g><g transform="translate(1771,0)"><use xlink:href="#E511-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="2063" y="-1"></use></g><use xlink:href="#E511-MJMAIN-2212" x="4653" y="0"></use><g transform="translate(5653,0)"><use xlink:href="#E511-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E511-MJSZ2-29" x="7047" y="-1"></use><g transform="translate(7810,0)"><use xlink:href="#E511-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E511-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E511-MJMATHI-6A" x="808" y="-429"></use></g></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-501">\begin{align*}
\frac{\partial }{\partial {\theta_{j}}}f\left( \theta \right)&=\frac{\partial }{\partial {\theta_{j}}}[-{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)] \\
&=-{{y}^{(i)}}\frac{\frac{\partial }{\partial {\theta_{j}}}\left(-z \right) e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{\frac{\partial }{\partial {\theta_{j}}}\left(z \right){e^{z}}}{1+e^{z}} \\
&=-{{y}^{(i)}}\frac{-x^{(i)}_je^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{x^{(i)}_j}{1+e^{-z}} \\
&=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j \\
&=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j \\
&=\left(\frac{{{y}^{(i)}}(e^{-z}+1)-1}{1+e^{-z}}\right)x^{(i)}_j \\
&={({{y}^{(i)}}-\frac{1}{1+{{e}^{-z}}})x_j^{(i)}} \\
&={\left({{y}^{(i)}}-{h_\theta}\left( {{x}^{(i)}} \right)\right)x_j^{(i)}} \\
&=-{\left({h_\theta}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}\right)x_j^{(i)}}
\end{align*}</script></div></div><p><span>则可得代价函数的导数:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n100" cid="n100" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-502-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="58.981ex" height="6.78ex" viewBox="0 -1660.6 25394.7 2919" role="img" focusable="false" style="vertical-align: -2.923ex; max-width: 100%;"><defs><path stroke-width="0" id="E512-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E512-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E512-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E512-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E512-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E512-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E512-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E512-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E512-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E512-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E512-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E512-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E512-MJMATHI-66" d="M118 -162Q120 -162 124 -164T135 -167T147 -168Q160 -168 171 -155T187 -126Q197 -99 221 27T267 267T289 382V385H242Q195 385 192 387Q188 390 188 397L195 425Q197 430 203 430T250 431Q298 431 298 432Q298 434 307 482T319 540Q356 705 465 705Q502 703 526 683T550 630Q550 594 529 578T487 561Q443 561 443 603Q443 622 454 636T478 657L487 662Q471 668 457 668Q445 668 434 658T419 630Q412 601 403 552T387 469T380 433Q380 431 435 431Q480 431 487 430T498 424Q499 420 496 407T491 391Q489 386 482 386T428 385H372L349 263Q301 15 282 -47Q255 -132 212 -173Q175 -205 139 -205Q107 -205 81 -186T55 -132Q55 -95 76 -78T118 -61Q162 -61 162 -103Q162 -122 151 -136T127 -157L118 -162Z"></path><path stroke-width="0" id="E512-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E512-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E512-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E512-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E512-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E512-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E512-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-6A" x="663" y="-213"></use></g></g></g><use xlink:href="#E512-MJMATHI-4A" x="1787" y="0"></use><use xlink:href="#E512-MJMAIN-28" x="2420" y="0"></use><use xlink:href="#E512-MJMATHI-3B8" x="2809" y="0"></use><use xlink:href="#E512-MJMAIN-29" x="3278" y="0"></use><use xlink:href="#E512-MJMAIN-3D" x="3945" y="0"></use><use xlink:href="#E512-MJMAIN-2212" x="5000" y="0"></use><g transform="translate(5778,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E512-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E512-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(7183,0)"><use xlink:href="#E512-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(8794,0)"><g transform="translate(120,0)"><rect stroke="none" width="1547" height="60" x="0" y="220"></rect><use xlink:href="#E512-MJMAIN-2202" x="490" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E512-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E512-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-6A" x="663" y="-213"></use></g></g></g><use xlink:href="#E512-MJMATHI-66" x="1787" y="0"></use><use xlink:href="#E512-MJMAIN-28" x="2337" y="0"></use><use xlink:href="#E512-MJMATHI-3B8" x="2726" y="0"></use><use xlink:href="#E512-MJMAIN-29" x="3195" y="0"></use></g><use xlink:href="#E512-MJMAIN-3D" x="12656" y="0"></use><g transform="translate(13434,0)"><g transform="translate(397,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E512-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E512-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(15116,0)"><use xlink:href="#E512-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E512-MJMAIN-28" x="16560" y="0"></use><g transform="translate(16949,0)"><use xlink:href="#E512-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E512-MJMAIN-28" x="17957" y="0"></use><g transform="translate(18346,0)"><use xlink:href="#E512-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E512-MJMAIN-29" x="19812" y="0"></use><use xlink:href="#E512-MJMAIN-2212" x="20423" y="0"></use><g transform="translate(21423,0)"><use xlink:href="#E512-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E512-MJMAIN-29" x="22817" y="0"></use><use xlink:href="#E512-MJMAIN-22C5" x="23428" y="0"></use><g transform="translate(23928,0)"><use xlink:href="#E512-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E512-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E512-MJMATHI-6A" x="808" y="-429"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-502">\frac{\partial }{\partial {\theta_{j}}}J(\theta) = -\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{\partial }{\partial {\theta_{j}}}f(\theta)}=\frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}</script></div></div><h2><a name="66-进阶优化advanced-optimization" class="md-header-anchor"></a><span>6.6 进阶优化(Advanced Optimization)</span></h2><p><span>运行梯度下降算法,其能最小化代价函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span> 并得出 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.089ex" height="2.11ex" viewBox="0 -806.1 469 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E74-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E74-MJMATHI-3B8" x="0" y="0"></use></g></svg></span><script type="math/tex">\theta</script><span> 的最优值,在使用梯度下降算法时,如果不需要观察代价函数的收敛情况,则直接计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span> 的导数项即可,而不需要计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.366ex" height="2.577ex" viewBox="0 -806.1 1880 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E237-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E237-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E237-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E237-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E237-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E237-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E237-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E237-MJMAIN-29" x="1491" y="0"></use></g></svg></span><script type="math/tex">J(\theta)</script><span> 值。</span></p><p><span>我们编写代码给出代价函数及其偏导数然后传入梯度下降算法中,接下来算法则会为我们最小化代价函数给出参数的最优解。这类算法被称为</span><strong><span>最优化算法(Optimization Algorithms)</span></strong><span>,梯度下降算法不是唯一的最小化算法</span><sup class='md-footnote'><a href='#dfref-footnote-1' name='ref-footnote-1'>1</a></sup><span>。</span></p><p><span>一些最优化算法:</span></p><ul><li><p><span>梯度下降法(Gradient Descent)</span></p></li><li><p><span>共轭梯度算法(Conjugate gradient)</span></p></li><li><p><span>牛顿法和拟牛顿法(Newton&#39;s method &amp; Quasi-Newton Methods)</span></p><ul><li><span>DFP算法</span></li><li><span>局部优化法(BFGS)</span></li><li><span>有限内存局部优化法(L-BFGS)</span></li></ul></li><li><p><span>拉格朗日乘数法(Lagrange multiplier)</span></p></li></ul><p><span>比较梯度下降算法:一些最优化算法虽然会更为复杂,难以调试,自行实现又困难重重,开源库又效率也不一,哎,做个调包侠还得碰运气。不过这些算法通常效率更高,并无需选择学习速率 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.486ex" height="1.41ex" viewBox="0 -504.6 640 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E76-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E76-MJMATHI-3B1" x="0" y="0"></use></g></svg></span><script type="math/tex">\alpha</script><span>(少一个参数少一份痛苦啊!)。</span></p><p><span>Octave/Matlab 中对这类高级算法做了封装,易于调用。</span></p><p>&nbsp;</p><p><span>假设有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="28.31ex" height="2.811ex" viewBox="0 -906.7 12189.1 1210.2" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E238-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E238-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E238-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E238-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E238-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E238-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E238-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E238-MJMAIN-35" d="M164 157Q164 133 148 117T109 101H102Q148 22 224 22Q294 22 326 82Q345 115 345 210Q345 313 318 349Q292 382 260 382H254Q176 382 136 314Q132 307 129 306T114 304Q97 304 95 310Q93 314 93 485V614Q93 664 98 664Q100 666 102 666Q103 666 123 658T178 642T253 634Q324 634 389 662Q397 666 402 666Q410 666 410 648V635Q328 538 205 538Q174 538 149 544L139 546V374Q158 388 169 396T205 412T256 420Q337 420 393 355T449 201Q449 109 385 44T229 -22Q148 -22 99 32T50 154Q50 178 61 192T84 210T107 214Q132 214 148 197T164 157Z"></path><path stroke-width="0" id="E238-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E238-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E238-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E238-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E238-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E238-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E238-MJMAIN-3D" x="2157" y="0"></use><use xlink:href="#E238-MJMAIN-28" x="3213" y="0"></use><g transform="translate(3602,0)"><use xlink:href="#E238-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E238-MJMAIN-31" x="663" y="-213"></use></g><use xlink:href="#E238-MJMAIN-2212" x="4747" y="0"></use><use xlink:href="#E238-MJMAIN-35" x="5747" y="0"></use><g transform="translate(6247,0)"><use xlink:href="#E238-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E238-MJMAIN-32" x="550" y="513"></use></g><use xlink:href="#E238-MJMAIN-2B" x="7312" y="0"></use><use xlink:href="#E238-MJMAIN-28" x="8312" y="0"></use><g transform="translate(8701,0)"><use xlink:href="#E238-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E238-MJMAIN-32" x="663" y="-213"></use></g><use xlink:href="#E238-MJMAIN-2212" x="9846" y="0"></use><use xlink:href="#E238-MJMAIN-35" x="10846" y="0"></use><g transform="translate(11346,0)"><use xlink:href="#E238-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E238-MJMAIN-32" x="550" y="513"></use></g></g></svg></span><script type="math/tex">J(\theta) = (\theta_1-5)^2 + (\theta_2-5)^2</script><span>,要求参数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.523ex" height="5.846ex" viewBox="0 -1509.8 4100.2 2517" role="img" focusable="false" style="vertical-align: -2.339ex;"><defs><path stroke-width="0" id="E239-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E239-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E239-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E239-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E239-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E239-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E239-MJSZ3-5B" d="M247 -949V1450H516V1388H309V-887H516V-949H247Z"></path><path stroke-width="0" id="E239-MJSZ3-5D" d="M11 1388V1450H280V-949H11V-887H218V1388H11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E239-MJMATHI-3B8" x="0" y="0"></use><use xlink:href="#E239-MJMAIN-3D" x="746" y="0"></use><g transform="translate(1802,0)"><use xlink:href="#E239-MJSZ3-5B"></use><g transform="translate(695,0)"><g transform="translate(-15,0)"><g transform="translate(0,650)"><use xlink:href="#E239-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E239-MJMAIN-31" x="663" y="-213"></use></g><g transform="translate(0,-750)"><use xlink:href="#E239-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E239-MJMAIN-32" x="663" y="-213"></use></g></g></g><use xlink:href="#E239-MJSZ3-5D" x="1769" y="-1"></use></g></g></svg></span><script type="math/tex">\theta=\begin{bmatrix} \theta_1\\\theta_2\end{bmatrix}</script><span>的最优值。</span></p><p><span>下面为 Octave/Matlab 求解最优化问题的代码实例:</span></p><ol start='' ><li><span>创建一个函数以返回代价函数及其偏导数:</span></li></ol><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang="matlab"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="matlab"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 44px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 36px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>10</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -36px; width: 36px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-builtin">function</span> [<span class="cm-variable">jVal</span>, <span class="cm-variable">gradient</span>] = <span class="cm-variable">costFunction</span>(<span class="cm-variable">theta</span>)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-comment">% code to compute J(theta)</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">jVal</span>=(<span class="cm-variable">theta</span>(<span class="cm-number">1</span>)<span class="cm-number">-5</span>)<span class="cm-operator">^</span><span class="cm-number">2</span><span class="cm-operator">+</span>(<span class="cm-variable">theta</span>(<span class="cm-number">2</span>)<span class="cm-number">-5</span>)<span class="cm-operator">^</span><span class="cm-number">2</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-comment">% code to compute derivative of J(theta)</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">gradient</span>=<span class="cm-builtin">zeros</span>(<span class="cm-number">2</span>,<span class="cm-number">1</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">gradient</span>(<span class="cm-number">1</span>)=<span class="cm-number">2</span><span class="cm-operator">*</span>(<span class="cm-variable">theta</span>(<span class="cm-number">1</span>)<span class="cm-number">-5</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">9</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">gradient</span>(<span class="cm-number">2</span>)=<span class="cm-number">2</span><span class="cm-operator">*</span>(<span class="cm-variable">theta</span>(<span class="cm-number">2</span>)<span class="cm-number">-5</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">10</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 230px;"></div><div class="CodeMirror-gutters" style="height: 230px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 35px;"></div></div></div></div></pre><ol start='2' ><li><span>将 </span><code>costFunction</code><span> 函数及所需参数传入最优化函数 </span><code>fminunc</code><span>,以求解最优化问题:</span></li></ol><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang="matlab"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="matlab"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 36px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>3</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation"><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -28px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">options</span> = <span class="cm-variable">optimset</span>(<span class="cm-string">'GradObj'</span>, <span class="cm-string">'on'</span>, <span class="cm-string">'MaxIter'</span>, <span class="cm-number">100</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">initialTheta</span> = <span class="cm-builtin">zeros</span>(<span class="cm-number">2</span>,<span class="cm-number">1</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; [<span class="cm-variable">optTheta</span>, <span class="cm-variable">functionVal</span>, <span class="cm-variable">exitFlag</span>] = <span class="cm-variable">fminunc</span>(<span class="cm-operator">@</span><span class="cm-variable">costFunction</span>, <span class="cm-variable">initialTheta</span>, <span class="cm-variable">options</span>);</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 69px;"></div><div class="CodeMirror-gutters" style="height: 69px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><blockquote><p><code>&#39;GradObj&#39;, &#39;on&#39;</code><span>: 启用梯度目标参数(则需要将梯度传入算法)</span></p><p><code>&#39;MaxIter&#39;, 100</code><span>: 最大迭代次数为 100 次</span></p><p><code>@xxx</code><span>: Octave/Matlab 中的函数指针</span></p><p><code>optTheta</code><span>: 最优化得到的参数向量</span></p><p><code>functionVal</code><span>: 引用函数最后一次的返回值</span></p><p><code>exitFlag</code><span>: 标记代价函数是否收敛</span></p></blockquote><p><span>注:Octave/Matlab 中可以使用 </span><code>help fminunc</code><span> 命令随时查看函数的帮助文档。</span></p><ol start='3' ><li><span>返回结果</span></li></ol><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang=""><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang=""><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 36px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>8</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -28px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">optTheta =</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 5</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 5</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">functionVal = 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">exitFlag = 1</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 184px;"></div><div class="CodeMirror-gutters" style="height: 184px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><h2><a name="67-多类别分类-一对多multiclass-classification-one-vs-all" class="md-header-anchor"></a><span>6.7 多类别分类: 一对多(Multiclass Classification: One-vs-all)</span></h2><p><span>一直在讨论二元分类问题,这里谈谈多类别分类问题(比如天气预报)。</span></p><p><img src="images/20180112_001720.png" referrerpolicy="no-referrer"></p><p><span>原理是,转化多类别分类问题为</span><strong><span>多个二元分类问题</span></strong><span>,这种方法被称为 One-vs-all。</span></p><p><span>正式定义:</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="39.013ex" height="3.511ex" viewBox="0 -1107.7 16797.4 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E240-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E240-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E240-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E240-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E240-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E240-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E240-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E240-MJMATHI-70" d="M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z"></path><path stroke-width="0" id="E240-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E240-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E240-MJMAIN-3B" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 85 94 103T137 121Q202 121 202 8Q202 -44 183 -94T144 -169T118 -194Q115 -194 106 -186T95 -174Q94 -171 107 -155T137 -107T160 -38Q161 -32 162 -22T165 -4T165 4Q165 5 161 4T142 0Q110 0 94 18T78 60Z"></path><path stroke-width="0" id="E240-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E240-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E240-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E240-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E240-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E240-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E240-MJMATHI-68" x="0" y="0"></use><g transform="translate(576,521)"><use transform="scale(0.707)" xlink:href="#E240-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E240-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E240-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E240-MJMATHI-3B8" x="814" y="-473"></use><g transform="translate(1636,0)"><use xlink:href="#E240-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E240-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E240-MJMAIN-29" x="961" y="0"></use></g><use xlink:href="#E240-MJMAIN-3D" x="3264" y="0"></use><use xlink:href="#E240-MJMATHI-70" x="4320" y="0"></use><g transform="translate(4989,0)"><use xlink:href="#E240-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E240-MJMATHI-79" x="389" y="0"></use><use xlink:href="#E240-MJMAIN-3D" x="1163" y="0"></use><use xlink:href="#E240-MJMATHI-69" x="2219" y="0"></use><use xlink:href="#E240-MJMAIN-7C" x="2564" y="0"></use><use xlink:href="#E240-MJMATHI-78" x="2842" y="0"></use><use xlink:href="#E240-MJMAIN-3B" x="3414" y="0"></use><use xlink:href="#E240-MJMATHI-3B8" x="3859" y="0"></use><use xlink:href="#E240-MJMAIN-29" x="4328" y="0"></use></g><use xlink:href="#E240-MJMAIN-2C" x="9873" y="0"></use><use xlink:href="#E240-MJMATHI-69" x="10318" y="0"></use><use xlink:href="#E240-MJMAIN-3D" x="10941" y="0"></use><g transform="translate(11997,0)"><use xlink:href="#E240-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E240-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E240-MJMAIN-2C" x="889" y="0"></use><use xlink:href="#E240-MJMAIN-32" x="1333" y="0"></use><use xlink:href="#E240-MJMAIN-2C" x="1833" y="0"></use><g transform="translate(2278,0)"><use xlink:href="#E240-MJMAIN-33"></use><use xlink:href="#E240-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E240-MJMAIN-2E" x="778" y="0"></use><use xlink:href="#E240-MJMAIN-2E" x="1056" y="0"></use><use xlink:href="#E240-MJMAIN-2E" x="1334" y="0"></use></g><use xlink:href="#E240-MJMATHI-6B" x="3890" y="0"></use><use xlink:href="#E240-MJMAIN-29" x="4411" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta^{\left( i \right)}\left( x \right)=p\left( y=i|x;\theta \right), i=\left( 1,2,3....k \right)</script></p><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.937ex" height="3.511ex" viewBox="0 -1107.7 2986.7 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E241-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E241-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E241-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E241-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E241-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E241-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E241-MJMATHI-68" x="0" y="0"></use><g transform="translate(576,521)"><use transform="scale(0.707)" xlink:href="#E241-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E241-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E241-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E241-MJMATHI-3B8" x="814" y="-473"></use><g transform="translate(1636,0)"><use xlink:href="#E241-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E241-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E241-MJMAIN-29" x="961" y="0"></use></g></g></svg></span><script type="math/tex">h_\theta^{\left( i \right)}\left( x \right)</script><span>: 输出 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.053ex" height="2.461ex" viewBox="0 -755.9 2175.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E242-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E242-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E242-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E242-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E242-MJMAIN-3D" x="774" y="0"></use><use xlink:href="#E242-MJMATHI-69" x="1830" y="0"></use></g></svg></span><script type="math/tex">y=i</script><span>(属于第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.801ex" height="1.994ex" viewBox="0 -755.9 345 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E27-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E27-MJMATHI-69" x="0" y="0"></use></g></svg></span><script type="math/tex">i</script><span> 个分类)的可能性</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span>: 类别总数,如上图 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.469ex" height="1.994ex" viewBox="0 -755.9 2354.6 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E244-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path stroke-width="0" id="E244-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E244-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E244-MJMATHI-6B" x="0" y="0"></use><use xlink:href="#E244-MJMAIN-3D" x="798" y="0"></use><use xlink:href="#E244-MJMAIN-33" x="1854" y="0"></use></g></svg></span><script type="math/tex">k=3</script><span>。</span></p></blockquote><p><span>注意多类别分类问题中 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.476ex" height="2.577ex" viewBox="0 -806.1 2357.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E250-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E250-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E250-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E250-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E250-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E250-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E250-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E250-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E250-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E250-MJMAIN-29" x="1968" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x)</script><span> 的结果不再只是一个实数而是一个向量,如果类别总数为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span>,现在 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.476ex" height="2.577ex" viewBox="0 -806.1 2357.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E250-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E250-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E250-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E250-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E250-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E250-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E250-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E250-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E250-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E250-MJMAIN-29" x="1968" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x)</script><span> 就是一个 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span> 维向量。</span></p><p><span>对于某个样本实例,需计算所有的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span> 种分类情况得到 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.476ex" height="2.577ex" viewBox="0 -806.1 2357.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E250-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E250-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E250-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E250-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E250-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E250-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E250-MJMATHI-3B8" x="814" y="-218"></use><use xlink:href="#E250-MJMAIN-28" x="1007" y="0"></use><use xlink:href="#E250-MJMATHI-78" x="1396" y="0"></use><use xlink:href="#E250-MJMAIN-29" x="1968" y="0"></use></g></svg></span><script type="math/tex">h_\theta(x)</script><span>,然后看分为哪个类别时预测输出的值最大,就说它输出属于哪个类别,即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="16.285ex" height="4.445ex" viewBox="0 -1107.7 7011.6 1913.9" role="img" focusable="false" style="vertical-align: -1.872ex;"><defs><path stroke-width="0" id="E252-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E252-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E252-MJMAIN-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E252-MJMAIN-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path stroke-width="0" id="E252-MJMAIN-78" d="M201 0Q189 3 102 3Q26 3 17 0H11V46H25Q48 47 67 52T96 61T121 78T139 96T160 122T180 150L226 210L168 288Q159 301 149 315T133 336T122 351T113 363T107 370T100 376T94 379T88 381T80 383Q74 383 44 385H16V431H23Q59 429 126 429Q219 429 229 431H237V385Q201 381 201 369Q201 367 211 353T239 315T268 274L272 270L297 304Q329 345 329 358Q329 364 327 369T322 376T317 380T310 384L307 385H302V431H309Q324 428 408 428Q487 428 493 431H499V385H492Q443 385 411 368Q394 360 377 341T312 257L296 236L358 151Q424 61 429 57T446 50Q464 46 499 46H516V0H510H502Q494 1 482 1T457 2T432 2T414 3Q403 3 377 3T327 1L304 0H295V46H298Q309 46 320 51T331 63Q331 65 291 120L250 175Q249 174 219 133T185 88Q181 83 181 74Q181 63 188 55T206 46Q208 46 208 23V0H201Z"></path><path stroke-width="0" id="E252-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E252-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E252-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E252-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E252-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E252-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E252-MJMATHI-79" x="0" y="0"></use><use xlink:href="#E252-MJMAIN-3D" x="774" y="0"></use><g transform="translate(1830,0)"><use xlink:href="#E252-MJMAIN-6D"></use><use xlink:href="#E252-MJMAIN-61" x="833" y="0"></use><use xlink:href="#E252-MJMAIN-78" x="1333" y="0"></use><use transform="scale(0.707)" xlink:href="#E252-MJMATHI-69" x="1143" y="-913"></use></g><g transform="translate(4024,0)"><use xlink:href="#E252-MJMATHI-68" x="0" y="0"></use><g transform="translate(576,521)"><use transform="scale(0.707)" xlink:href="#E252-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E252-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E252-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E252-MJMATHI-3B8" x="814" y="-473"></use></g><g transform="translate(5661,0)"><use xlink:href="#E252-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E252-MJMATHI-78" x="389" y="0"></use><use xlink:href="#E252-MJMAIN-29" x="961" y="0"></use></g></g></svg></span><script type="math/tex">y = \mathop{\max}\limits_i\,h_\theta^{\left( i \right)}\left( x \right)</script><span>。</span></p><h1><a name="7-正则化regularization" class="md-header-anchor"></a><span>7 正则化(Regularization)</span></h1><h2><a name="71-过拟合问题the-problem-of-overfitting" class="md-header-anchor"></a><span>7.1 过拟合问题(The Problem of Overfitting)</span></h2><p><span>对于拟合的表现,可以分为三类情况:</span></p><ul><li><p><strong><span>欠拟合(Underfitting)</span></strong></p><p><span>无法很好的拟合训练集中的数据,预测值和实际值的误差很大,这类情况被称为欠拟合。拟合模型比较简单(特征选少了)时易出现这类情况。类似于,你上课不好好听,啥都不会,下课也差不多啥都不会。</span></p></li><li><p><strong><span>优良的拟合(Just right)</span></strong></p><p><span>不论是训练集数据还是不在训练集中的预测数据,都能给出较为正确的结果。类似于,学霸学神!</span></p></li><li><p><strong><span>过拟合(Overfitting)</span></strong></p><p><span>能很好甚至完美拟合训练集中的数据,即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.141ex" height="2.577ex" viewBox="0 -806.1 3935.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E253-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E253-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E253-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E253-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E253-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E253-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E253-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E253-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E253-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E253-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E253-MJMAIN-2192" x="2157" y="0"></use><use xlink:href="#E253-MJMAIN-30" x="3435" y="0"></use></g></svg></span><script type="math/tex">J(\theta) \to 0</script><span>,但是对于不在训练集中的</span><strong><span>新数据</span></strong><span>,预测值和实际值的误差会很大,</span><strong><span>泛化能力弱</span></strong><span>,这类情况被称为过拟合。拟合模型过于复杂(特征选多了)时易出现这类情况。类似于,你上课跟着老师做题都会都听懂了,下课遇到新题就懵了不会拓展。</span></p></li></ul><p><span>线性模型中的拟合情况(左图欠拟合,右图过拟合):</span>
<img src="images/20180112_091654.png" referrerpolicy="no-referrer"></p><p><span>逻辑分类模型中的拟合情况:</span>
<img src="images/20180112_092027.png" referrerpolicy="no-referrer"></p><p>&nbsp;</p><p><span>为了度量拟合表现,引入:</span></p><ul><li><p><span>偏差(bias)</span></p><p><span>指模型的预测值与真实值的</span><strong><span>偏离程度</span></strong><span>。偏差越大,预测值偏离真实值越厉害。偏差低意味着能较好地反应训练集中的数据情况。</span></p></li><li><p><span>方差(Variance)</span></p><p><span>指模型预测值的</span><strong><span>离散程度或者变化范围</span></strong><span>。方差越大,数据的分布越分散,函数波动越大,泛化能力越差。方差低意味着拟合曲线的稳定性高,波动小。</span></p></li></ul><p><span>据此,我们有对同一数据的各类拟合情况如下图:</span>
<img src="images/20180112_085630.png" referrerpolicy="no-referrer"></p><p><span>据上图,高偏差意味着欠拟合,高方差意味着过拟合。</span></p><p><span>我们应尽量使得拟合模型处于低方差(较好地拟合数据)状态且同时处于低偏差(较好地预测新值)的状态。</span></p><p><span>避免过拟合的方法有:</span></p><ul><li><p><span>减少特征的数量</span></p><ul><li><span>手动选取需保留的特征</span></li><li><span>使用模型选择算法来选取合适的特征(如 PCA 算法)</span></li><li><span>减少特征的方式易丢失有用的特征信息</span></li></ul></li><li><p><span>正则化(Regularization)</span></p><ul><li><span>可保留所有参数(许多有用的特征都能轻微影响结果)</span></li><li><span>减少/惩罚各参数大小(magnitude),以减轻各参数对模型的影响程度</span></li><li><span>当有很多参数对于模型只有轻微影响时,正则化方法的表现很好</span></li></ul></li></ul><h2><a name="72-代价函数cost-function" class="md-header-anchor"></a><span>7.2 代价函数(Cost Function)</span></h2><p><span>很多时候由于特征数量过多,过拟合时我们很难选出要保留的特征,这时候应用正则化方法则是很好的选择。</span></p><p><span>上文中,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="30.545ex" height="2.694ex" viewBox="0 -906.7 13151.2 1160" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E254-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E254-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E254-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E254-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E254-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E254-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E254-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E254-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E254-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-30" x="663" y="-213"></use><use xlink:href="#E254-MJMAIN-2B" x="1144" y="0"></use><g transform="translate(2144,0)"><use xlink:href="#E254-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-31" x="663" y="-213"></use></g><use xlink:href="#E254-MJMATHI-78" x="3067" y="0"></use><use xlink:href="#E254-MJMAIN-2B" x="3861" y="0"></use><g transform="translate(4861,0)"><use xlink:href="#E254-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-32" x="663" y="-213"></use></g><g transform="translate(5784,0)"><use xlink:href="#E254-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-32" x="808" y="513"></use></g><use xlink:href="#E254-MJMAIN-2B" x="7032" y="0"></use><g transform="translate(8032,0)"><use xlink:href="#E254-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-33" x="663" y="-213"></use></g><g transform="translate(8955,0)"><use xlink:href="#E254-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-33" x="808" y="513"></use></g><use xlink:href="#E254-MJMAIN-2B" x="10202" y="0"></use><g transform="translate(11203,0)"><use xlink:href="#E254-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-34" x="663" y="-213"></use></g><g transform="translate(12125,0)"><use xlink:href="#E254-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E254-MJMAIN-34" x="808" y="513"></use></g></g></svg></span><script type="math/tex">\theta_0 + \theta_1x + \theta_2x^2 + \theta_3x^3 + \theta_4x^4</script><span> 这样一个复杂的多项式较易过拟合,在不减少特征的情况下,</span><strong><span>如果能消除类似于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.525ex" height="2.694ex" viewBox="0 -906.7 1948.1 1160" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E262-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E262-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E262-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E262-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E262-MJMAIN-33" x="663" y="-213"></use><g transform="translate(922,0)"><use xlink:href="#E262-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E262-MJMAIN-33" x="808" y="513"></use></g></g></svg></span><script type="math/tex">\theta_3x^3</script><span>、</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.525ex" height="2.577ex" viewBox="0 -906.7 1948.1 1109.7" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E263-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E263-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E263-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E263-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E263-MJMAIN-34" x="663" y="-213"></use><g transform="translate(922,0)"><use xlink:href="#E263-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E263-MJMAIN-34" x="808" y="513"></use></g></g></svg></span><script type="math/tex">\theta_4x^4</script><span> 等复杂部分,那复杂函数就变得简单了</span></strong><span>。</span></p><p><span>为了保留各个参数的信息,不修改假设函数,改而修改代价函数:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n208" cid="n208" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-503-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="52.693ex" height="6.78ex" viewBox="0 -1660.6 22687.1 2919" role="img" focusable="false" style="vertical-align: -2.923ex; max-width: 100%;"><defs><path stroke-width="0" id="E513-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E513-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E513-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E513-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E513-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E513-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E513-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E513-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E513-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E513-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E513-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E513-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E513-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E513-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E513-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E513-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E513-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E513-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E513-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E513-MJMATHI-6D" x="0" y="0"></use><use xlink:href="#E513-MJMATHI-69" x="878" y="0"></use><g transform="translate(1223,0)"><use xlink:href="#E513-MJMATHI-6E" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-3B8" x="848" y="-218"></use></g><g transform="translate(2504,0)"><g transform="translate(120,0)"><rect stroke="none" width="1498" height="60" x="0" y="220"></rect><use xlink:href="#E513-MJMAIN-31" x="499" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E513-MJMAIN-32" x="0" y="0"></use><use xlink:href="#E513-MJMATHI-6D" x="500" y="0"></use></g></g></g><g transform="translate(4409,0)"><use xlink:href="#E513-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E513-MJMAIN-28" x="5853" y="0"></use><g transform="translate(6242,0)"><use xlink:href="#E513-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E513-MJMAIN-28" x="7249" y="0"></use><g transform="translate(7638,0)"><use xlink:href="#E513-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E513-MJMAIN-29" x="9105" y="0"></use><use xlink:href="#E513-MJMAIN-2212" x="9716" y="0"></use><g transform="translate(10716,0)"><use xlink:href="#E513-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(12109,0)"><use xlink:href="#E513-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-32" x="550" y="583"></use></g><use xlink:href="#E513-MJMAIN-2B" x="13174" y="0"></use><g transform="translate(14174,0)"><use xlink:href="#E513-MJMAIN-31"></use><use xlink:href="#E513-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E513-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E513-MJMAIN-30" x="1500" y="0"></use></g><use xlink:href="#E513-MJMAIN-22C5" x="16396" y="0"></use><g transform="translate(16897,0)"><use xlink:href="#E513-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-33" x="663" y="-433"></use></g><use xlink:href="#E513-MJMAIN-2B" x="18041" y="0"></use><g transform="translate(19042,0)"><use xlink:href="#E513-MJMAIN-31"></use><use xlink:href="#E513-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E513-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E513-MJMAIN-30" x="1500" y="0"></use></g><use xlink:href="#E513-MJMAIN-22C5" x="21264" y="0"></use><g transform="translate(21764,0)"><use xlink:href="#E513-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E513-MJMAIN-34" x="663" y="-445"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-503">min_\theta\ \dfrac{1}{2m}\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + 1000\cdot\theta_3^2 + 1000\cdot\theta_4^2</script></div></div><p><span>上式中,我们在代价函数中增加了 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.461ex" viewBox="0 -806.1 922.6 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E260-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E260-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E260-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E260-MJMAIN-33" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_3</script><span>、</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.344ex" viewBox="0 -806.1 922.6 1009.2" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E261-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E261-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E261-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E261-MJMAIN-34" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_4</script><span> 的惩罚项(penalty term) </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="19.771ex" height="3.044ex" viewBox="0 -906.7 8512.4 1310.7" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E259-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E259-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E259-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E259-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E259-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E259-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E259-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E259-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E259-MJMAIN-31"></use><use xlink:href="#E259-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E259-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E259-MJMAIN-30" x="1500" y="0"></use><use xlink:href="#E259-MJMAIN-22C5" x="2222" y="0"></use><g transform="translate(2722,0)"><use xlink:href="#E259-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E259-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E259-MJMAIN-33" x="663" y="-433"></use></g><use xlink:href="#E259-MJMAIN-2B" x="3867" y="0"></use><g transform="translate(4867,0)"><use xlink:href="#E259-MJMAIN-31"></use><use xlink:href="#E259-MJMAIN-30" x="500" y="0"></use><use xlink:href="#E259-MJMAIN-30" x="1000" y="0"></use><use xlink:href="#E259-MJMAIN-30" x="1500" y="0"></use></g><use xlink:href="#E259-MJMAIN-22C5" x="7089" y="0"></use><g transform="translate(7589,0)"><use xlink:href="#E259-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E259-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E259-MJMAIN-34" x="663" y="-445"></use></g></g></svg></span><script type="math/tex">1000\cdot\theta_3^2 + 1000\cdot\theta_4^2</script><span>,如果要最小化代价函数,那么势必需要极大地</span><strong><span>减小 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.461ex" viewBox="0 -806.1 922.6 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E260-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E260-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E260-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E260-MJMAIN-33" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_3</script><span>、</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.344ex" viewBox="0 -806.1 922.6 1009.2" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E261-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E261-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E261-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E261-MJMAIN-34" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_4</script></strong><span>,从而使得假设函数中的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.525ex" height="2.694ex" viewBox="0 -906.7 1948.1 1160" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E262-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E262-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E262-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E262-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E262-MJMAIN-33" x="663" y="-213"></use><g transform="translate(922,0)"><use xlink:href="#E262-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E262-MJMAIN-33" x="808" y="513"></use></g></g></svg></span><script type="math/tex">\theta_3x^3</script><span>、</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.525ex" height="2.577ex" viewBox="0 -906.7 1948.1 1109.7" role="img" focusable="false" style="vertical-align: -0.472ex;"><defs><path stroke-width="0" id="E263-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E263-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E263-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E263-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E263-MJMAIN-34" x="663" y="-213"></use><g transform="translate(922,0)"><use xlink:href="#E263-MJMATHI-78" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E263-MJMAIN-34" x="808" y="513"></use></g></g></svg></span><script type="math/tex">\theta_4x^4</script><span> 这两项的参数非常小,就相当于没有了,假设函数也就</span><strong><span>“变得”简单</span></strong><span>了,从而在保留各参数的情况下避免了过拟合问题。</span></p><p><img src="images/20180114_090054.png" referrerpolicy="no-referrer"></p><p>&nbsp;</p><p><span>根据上面的讨论,有时也无法决定要减少哪个参数,故统一惩罚除了 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.461ex" viewBox="0 -806.1 922.6 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E49-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E49-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E49-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E49-MJMAIN-30" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_0</script><span> 外的所有参数。</span></p><p><span>代价函数:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n214" cid="n214" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-504-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="43.872ex" height="7.13ex" viewBox="0 -1660.6 18889.2 3069.8" role="img" focusable="false" style="vertical-align: -3.273ex; max-width: 100%;"><defs><path stroke-width="0" id="E514-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E514-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E514-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E514-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E514-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E514-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E514-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E514-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E514-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E514-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E514-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E514-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E514-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E514-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E514-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E514-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E514-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E514-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E514-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E514-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E514-MJMATHI-4A" x="0" y="0"></use><g transform="translate(799,0)"><use xlink:href="#E514-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E514-MJMATHI-3B8" x="389" y="0"></use><use xlink:href="#E514-MJMAIN-29" x="858" y="0"></use></g><use xlink:href="#E514-MJMAIN-3D" x="2324" y="0"></use><g transform="translate(3102,0)"><g transform="translate(397,0)"><rect stroke="none" width="1498" height="60" x="0" y="220"></rect><use xlink:href="#E514-MJMAIN-31" x="499" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E514-MJMAIN-32" x="0" y="0"></use><use xlink:href="#E514-MJMATHI-6D" x="500" y="0"></use></g></g></g><use xlink:href="#E514-MJMAIN-5B" x="5118" y="0"></use><g transform="translate(5396,0)"><use xlink:href="#E514-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(7006,0)"><use xlink:href="#E514-MJMAIN-28" x="0" y="0"></use><g transform="translate(389,0)"><use xlink:href="#E514-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E514-MJMAIN-28" x="1396" y="0"></use><g transform="translate(1785,0)"><use xlink:href="#E514-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E514-MJMAIN-29" x="3251" y="0"></use><use xlink:href="#E514-MJMAIN-2212" x="3862" y="0"></use><g transform="translate(4863,0)"><use xlink:href="#E514-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E514-MJMAIN-29" x="6256" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-32" x="9397" y="947"></use><use xlink:href="#E514-MJMAIN-2B" x="7321" y="0"></use><use xlink:href="#E514-MJMATHI-3BB" x="8321" y="0"></use><g transform="translate(9071,0)"><use xlink:href="#E514-MJSZ2-2211" x="0" y="0"></use><g transform="translate(124,-1088)"><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-31" x="1189" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-6E" x="721" y="1626"></use></g><g transform="translate(10681,0)"><use xlink:href="#E514-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E514-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E514-MJMATHI-6A" x="663" y="-429"></use></g><use xlink:href="#E514-MJMAIN-5D" x="11604" y="0"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-504">J\left( \theta \right)=\frac{1}{2m}[\sum\limits_{i=1}^{m}{{{({h_\theta}({{x}^{(i)}})-{{y}^{(i)}})}^{2}}+\lambda \sum\limits_{j=1}^{n}{\theta_{j}^{2}}]}</script></div></div><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.994ex" viewBox="0 -755.9 583 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E268-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E268-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span>: 正则化参数(Regularization Parameter),</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.613ex" height="1.994ex" viewBox="0 -755.9 2416.6 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E265-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E265-MJMAIN-3E" d="M84 520Q84 528 88 533T96 539L99 540Q106 540 253 471T544 334L687 265Q694 260 694 250T687 235Q685 233 395 96L107 -40H101Q83 -38 83 -20Q83 -19 83 -17Q82 -10 98 -1Q117 9 248 71Q326 108 378 132L626 250L378 368Q90 504 86 509Q84 513 84 520Z"></path><path stroke-width="0" id="E265-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E265-MJMATHI-3BB" x="0" y="0"></use><use xlink:href="#E265-MJMAIN-3E" x="860" y="0"></use><use xlink:href="#E265-MJMAIN-30" x="1916" y="0"></use></g></svg></span><script type="math/tex">\lambda > 0</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.795ex" height="6.196ex" viewBox="-8.5 -1459.5 1203.5 2667.7" role="img" focusable="false" style="vertical-align: -2.806ex; margin-left: -0.02ex;"><defs><path stroke-width="0" id="E266-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E266-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E266-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E266-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E266-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E266-MJSZ1-2211" x="69" y="0"></use><g transform="translate(0,-888)"><use transform="scale(0.707)" xlink:href="#E266-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E266-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E266-MJMAIN-31" x="1189" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E266-MJMATHI-6E" x="544" y="1343"></use></g></svg></span><script type="math/tex">\sum\limits_{j=1}^{n}</script><span>: 不惩罚基础参数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.143ex" height="2.461ex" viewBox="0 -806.1 922.6 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E49-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E49-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E49-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E49-MJMAIN-30" x="663" y="-213"></use></g></svg></span><script type="math/tex">\theta_0</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.046ex" height="6.196ex" viewBox="0 -1459.5 3033.9 2667.7" role="img" focusable="false" style="vertical-align: -2.806ex;"><defs><path stroke-width="0" id="E267-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E267-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E267-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E267-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E267-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E267-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E267-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E267-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E267-MJMATHI-3BB" x="0" y="0"></use><g transform="translate(749,0)"><use xlink:href="#E267-MJSZ1-2211" x="69" y="0"></use><g transform="translate(0,-888)"><use transform="scale(0.707)" xlink:href="#E267-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E267-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E267-MJMAIN-31" x="1189" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E267-MJMATHI-6E" x="544" y="1343"></use></g><g transform="translate(2111,0)"><use xlink:href="#E267-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E267-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E267-MJMATHI-6A" x="663" y="-429"></use></g></g></svg></span><script type="math/tex">\lambda \sum\limits_{j=1}^{n}{\theta_{j}^{2}}</script><span>: 正则化项</span></p></blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.354ex" height="1.994ex" viewBox="0 -755.9 583 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E268-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E268-MJMATHI-3BB" x="0" y="0"></use></g></svg></span><script type="math/tex">\lambda</script><span> 正则化参数类似于学习速率,也需要我们自行对其选择一个合适的值。</span></p><ul><li><p><span>过大</span></p><ul><li><span>导致模型欠拟合(假设可能会变成近乎 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.569ex" height="2.461ex" viewBox="0 -806.1 2828.1 1059.4" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E269-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E269-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E269-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E269-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E269-MJMATHI-78" x="0" y="0"></use><use xlink:href="#E269-MJMAIN-3D" x="849" y="0"></use><g transform="translate(1905,0)"><use xlink:href="#E269-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E269-MJMAIN-30" x="663" y="-213"></use></g></g></svg></span><script type="math/tex">x = \theta_0</script><span> 的直线 )</span></li><li><span>无法正常去过拟问题</span></li><li><span>梯度下降可能无法收敛</span></li></ul></li><li><p><span>过小</span></p><ul><li><span>无法避免过拟合(等于没有)</span></li></ul></li></ul><blockquote><p><span>正则化符合奥卡姆剃刀(Occam&#39;s razor)原理。在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。</span></p></blockquote><blockquote><p><span>正则化是结构风险最小化策略的实现,是去过拟合问题的典型方法,虽然看起来多了个一参数多了一重麻烦,后文会介绍自动选取正则化参数的方法。模型越复杂,正则化参数值就越大。比如,正则化项可以是模型参数向量的范数。</span></p></blockquote><h2><a name="73-线性回归正则化regularized-linear-regression" class="md-header-anchor"></a><span>7.3 线性回归正则化(Regularized Linear Regression)</span></h2><p><span>应用正则化的线性回归梯度下降算法:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n243" cid="n243" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-505-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="72.2ex" height="20.788ex" viewBox="0 -4726.4 31085.9 8950.1" role="img" focusable="false" style="vertical-align: -9.81ex; max-width: 100%;"><defs><path stroke-width="0" id="E515-MJMAIN-52" d="M130 622Q123 629 119 631T103 634T60 637H27V683H202H236H300Q376 683 417 677T500 648Q595 600 609 517Q610 512 610 501Q610 468 594 439T556 392T511 361T472 343L456 338Q459 335 467 332Q497 316 516 298T545 254T559 211T568 155T578 94Q588 46 602 31T640 16H645Q660 16 674 32T692 87Q692 98 696 101T712 105T728 103T732 90Q732 59 716 27T672 -16Q656 -22 630 -22Q481 -16 458 90Q456 101 456 163T449 246Q430 304 373 320L363 322L297 323H231V192L232 61Q238 51 249 49T301 46H334V0H323Q302 3 181 3Q59 3 38 0H27V46H60Q102 47 111 49T130 61V622ZM491 499V509Q491 527 490 539T481 570T462 601T424 623T362 636Q360 636 340 636T304 637H283Q238 637 234 628Q231 624 231 492V360H289Q390 360 434 378T489 456Q491 467 491 499Z"></path><path stroke-width="0" id="E515-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E515-MJMAIN-70" d="M36 -148H50Q89 -148 97 -134V-126Q97 -119 97 -107T97 -77T98 -38T98 6T98 55T98 106Q98 140 98 177T98 243T98 296T97 335T97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 61 434T98 436Q115 437 135 438T165 441T176 442H179V416L180 390L188 397Q247 441 326 441Q407 441 464 377T522 216Q522 115 457 52T310 -11Q242 -11 190 33L182 40V-45V-101Q182 -128 184 -134T195 -145Q216 -148 244 -148H260V-194H252L228 -193Q205 -192 178 -192T140 -191Q37 -191 28 -194H20V-148H36ZM424 218Q424 292 390 347T305 402Q234 402 182 337V98Q222 26 294 26Q345 26 384 80T424 218Z"></path><path stroke-width="0" id="E515-MJMAIN-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path stroke-width="0" id="E515-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E515-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E515-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E515-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E515-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E515-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E515-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E515-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E515-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E515-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E515-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E515-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E515-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E515-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E515-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E515-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E515-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E515-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E515-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E515-MJSZ4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path stroke-width="0" id="E515-MJSZ4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path stroke-width="0" id="E515-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E515-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E515-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E515-MJSZ4-5B" d="M269 -1249V1750H577V1677H342V-1176H577V-1249H269Z"></path><path stroke-width="0" id="E515-MJSZ4-5D" d="M5 1677V1750H313V-1249H5V-1176H240V1677H5Z"></path><path stroke-width="0" id="E515-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E515-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E515-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E515-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E515-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E515-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,3829)"><use xlink:href="#E515-MJMAIN-52"></use><use xlink:href="#E515-MJMAIN-65" x="736" y="0"></use><use xlink:href="#E515-MJMAIN-70" x="1180" y="0"></use><use xlink:href="#E515-MJMAIN-65" x="1736" y="0"></use><use xlink:href="#E515-MJMAIN-61" x="2180" y="0"></use><use xlink:href="#E515-MJMAIN-74" x="2680" y="0"></use><use xlink:href="#E515-MJMAIN-7B" x="3319" y="0"></use></g><g transform="translate(0,1716)"><g transform="translate(1000,0)"><use xlink:href="#E515-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-30" x="663" y="-213"></use></g><g transform="translate(2200,0)"><use xlink:href="#E515-MJMAIN-3A"></use><use xlink:href="#E515-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3534,0)"><use xlink:href="#E515-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-30" x="663" y="-213"></use></g><use xlink:href="#E515-MJMAIN-2212" x="4678" y="0"></use><use xlink:href="#E515-MJMATHI-3B1" x="5679" y="0"></use><g transform="translate(6569,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E515-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E515-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(8223,0)"><use xlink:href="#E515-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E515-MJMAIN-28" x="9667" y="0"></use><g transform="translate(10056,0)"><use xlink:href="#E515-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E515-MJMAIN-28" x="11064" y="0"></use><g transform="translate(11453,0)"><use xlink:href="#E515-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E515-MJMAIN-29" x="12919" y="0"></use><use xlink:href="#E515-MJMAIN-2212" x="13530" y="0"></use><g transform="translate(14530,0)"><use xlink:href="#E515-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E515-MJMAIN-29" x="15924" y="0"></use><g transform="translate(16313,0)"><use xlink:href="#E515-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-30" x="808" y="-434"></use></g></g><g transform="translate(0,-1530)"><g transform="translate(1000,0)"><use xlink:href="#E515-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6A" x="663" y="-213"></use></g><g transform="translate(2138,0)"><use xlink:href="#E515-MJMAIN-3A"></use><use xlink:href="#E515-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3471,0)"><use xlink:href="#E515-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E515-MJMAIN-2212" x="4554" y="0"></use><use xlink:href="#E515-MJMATHI-3B1" x="5554" y="0"></use><g transform="translate(6611,0)"><use xlink:href="#E515-MJSZ4-5B"></use><g transform="translate(583,0)"><use xlink:href="#E515-MJSZ4-28"></use><g transform="translate(792,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E515-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E515-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(2446,0)"><use xlink:href="#E515-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E515-MJMAIN-28" x="3890" y="0"></use><g transform="translate(4279,0)"><use xlink:href="#E515-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E515-MJMAIN-28" x="5287" y="0"></use><g transform="translate(5676,0)"><use xlink:href="#E515-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E515-MJMAIN-29" x="7142" y="0"></use><use xlink:href="#E515-MJMAIN-2212" x="7753" y="0"></use><g transform="translate(8753,0)"><use xlink:href="#E515-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E515-MJMAIN-29" x="10147" y="0"></use><g transform="translate(10536,0)"><use xlink:href="#E515-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6A" x="808" y="-429"></use></g><use xlink:href="#E515-MJSZ4-29" x="12002" y="0"></use></g><use xlink:href="#E515-MJMAIN-2B" x="13599" y="0"></use><g transform="translate(14377,0)"><g transform="translate(342,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E515-MJMATHI-3BB" x="207" y="676"></use><use xlink:href="#E515-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(15837,0)"><use xlink:href="#E515-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E515-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E515-MJSZ4-5D" x="16697" y="-1"></use></g><use xlink:href="#E515-MJMAIN-2C" x="24058" y="0"></use><use xlink:href="#E515-MJMATHI-6A" x="25253" y="0"></use><use xlink:href="#E515-MJMAIN-2208" x="25943" y="0"></use><use xlink:href="#E515-MJMAIN-7B" x="26888" y="0"></use><use xlink:href="#E515-MJMAIN-31" x="27388" y="0"></use><use xlink:href="#E515-MJMAIN-2C" x="27888" y="0"></use><g transform="translate(28332,0)"><use xlink:href="#E515-MJMAIN-32"></use><use xlink:href="#E515-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E515-MJMAIN-2E" x="778" y="0"></use><use xlink:href="#E515-MJMAIN-2E" x="1056" y="0"></use></g><use xlink:href="#E515-MJMATHI-6E" x="29666" y="0"></use><use xlink:href="#E515-MJMAIN-7D" x="30266" y="0"></use></g><g transform="translate(0,-3880)"><use xlink:href="#E515-MJMAIN-7D" x="0" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-505">\begin{align*}
& \text{Repeat}\ \lbrace \\
& \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \\
& \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\\
& \rbrace
\end{align*}</script></div></div><p><span>也可以移项得到更新表达式的另一种表示形式</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n245" cid="n245" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-506-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="47.69ex" height="6.78ex" viewBox="0 -1660.6 20533.2 2919" role="img" focusable="false" style="vertical-align: -2.923ex; max-width: 100%;"><defs><path stroke-width="0" id="E516-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E516-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E516-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E516-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E516-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E516-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E516-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E516-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E516-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E516-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E516-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E516-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E516-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E516-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E516-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E516-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E516-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-6A" x="663" y="-213"></use><g transform="translate(1138,0)"><use xlink:href="#E516-MJMAIN-3A"></use><use xlink:href="#E516-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(2471,0)"><use xlink:href="#E516-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E516-MJMAIN-28" x="3332" y="0"></use><use xlink:href="#E516-MJMAIN-31" x="3721" y="0"></use><use xlink:href="#E516-MJMAIN-2212" x="4443" y="0"></use><use xlink:href="#E516-MJMATHI-3B1" x="5443" y="0"></use><g transform="translate(6083,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E516-MJMATHI-3BB" x="207" y="676"></use><use xlink:href="#E516-MJMATHI-6D" x="60" y="-686"></use></g></g><use xlink:href="#E516-MJMAIN-29" x="7321" y="0"></use><use xlink:href="#E516-MJMAIN-2212" x="7932" y="0"></use><use xlink:href="#E516-MJMATHI-3B1" x="8933" y="0"></use><g transform="translate(9573,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E516-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E516-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(10977,0)"><use xlink:href="#E516-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E516-MJMAIN-28" x="12421" y="0"></use><g transform="translate(12810,0)"><use xlink:href="#E516-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E516-MJMAIN-28" x="13818" y="0"></use><g transform="translate(14207,0)"><use xlink:href="#E516-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E516-MJMAIN-29" x="15673" y="0"></use><use xlink:href="#E516-MJMAIN-2212" x="16284" y="0"></use><g transform="translate(17284,0)"><use xlink:href="#E516-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E516-MJMAIN-29" x="18678" y="0"></use><g transform="translate(19067,0)"><use xlink:href="#E516-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E516-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E516-MJMATHI-6A" x="808" y="-429"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-506">\theta_j := \theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)}</script></div></div><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.276ex" height="3.278ex" viewBox="0 -956.9 1841.2 1411.3" role="img" focusable="false" style="vertical-align: -1.055ex;"><defs><path stroke-width="0" id="E270-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E270-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E270-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E270-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E270-MJMATHI-3BB" x="232" y="583"></use><use transform="scale(0.707)" xlink:href="#E270-MJMATHI-6D" x="84" y="-488"></use></g><g transform="translate(980,0)"><use xlink:href="#E270-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E270-MJMATHI-6A" x="663" y="-213"></use></g></g></svg></span><script type="math/tex">\frac{\lambda}{m}\theta_j</script><span>: 正则化项</span></p></blockquote><p>&nbsp;</p><p><span>应用正则化的正规方程法</span><sup class='md-footnote'><a href='#dfref-footnote-2' name='ref-footnote-2'>2</a></sup><span>:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n251" cid="n251" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-507-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="33.275ex" height="21.488ex" viewBox="0 -4877.1 14326.7 9251.7" role="img" focusable="false" style="vertical-align: -10.16ex; max-width: 100%;"><defs><path stroke-width="0" id="E517-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E517-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E517-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E517-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E517-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E517-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E517-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E517-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E517-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E517-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E517-MJSZ1-28" d="M152 251Q152 646 388 850H416Q422 844 422 841Q422 837 403 816T357 753T302 649T255 482T236 250Q236 124 255 19T301 -147T356 -251T403 -315T422 -340Q422 -343 416 -349H388Q359 -325 332 -296T271 -213T212 -97T170 56T152 251Z"></path><path stroke-width="0" id="E517-MJSZ1-29" d="M305 251Q305 -145 69 -349H56Q43 -349 39 -347T35 -338Q37 -333 60 -307T108 -239T160 -136T204 27T221 250T204 473T160 636T108 740T60 807T35 839Q35 850 50 850H56H69Q197 743 256 566Q305 425 305 251Z"></path><path stroke-width="0" id="E517-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E517-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E517-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E517-MJMAIN-77" d="M90 368Q84 378 76 380T40 385H18V431H24L43 430Q62 430 84 429T116 428Q206 428 221 431H229V385H215Q177 383 177 368Q177 367 221 239L265 113L339 328L333 345Q323 374 316 379Q308 384 278 385H258V431H264Q270 428 348 428Q439 428 454 431H461V385H452Q404 385 404 369Q404 366 418 324T449 234T481 143L496 100L537 219Q579 341 579 347Q579 363 564 373T530 385H522V431H529Q541 428 624 428Q692 428 698 431H703V385H697Q696 385 691 385T682 384Q635 377 619 334L559 161Q546 124 528 71Q508 12 503 1T487 -11H479Q460 -11 456 -4Q455 -3 407 133L361 267Q359 263 266 -4Q261 -11 243 -11H238Q225 -11 220 -3L90 368Z"></path><path stroke-width="0" id="E517-MJMAIN-68" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 124T102 167T103 217T103 272T103 329Q103 366 103 407T103 482T102 542T102 586T102 603Q99 622 88 628T43 637H25V660Q25 683 27 683L37 684Q47 685 66 686T103 688Q120 689 140 690T170 693T181 694H184V367Q244 442 328 442Q451 442 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E517-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E517-MJMAIN-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path stroke-width="0" id="E517-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E517-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E517-MJMAIN-22F1" d="M133 760Q133 784 150 802T193 820Q217 820 235 804T254 761Q254 736 237 718T194 700T151 717T133 760ZM580 460Q580 484 597 502T640 520Q664 520 682 504T701 461Q701 436 684 418T641 400T598 417T580 460ZM1027 160Q1027 184 1044 202T1087 220Q1111 220 1129 204T1148 161Q1148 136 1131 118T1088 100T1045 117T1027 160Z"></path><path stroke-width="0" id="E517-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E517-MJSZ4-23A1" d="M319 -645V1154H666V1070H403V-645H319Z"></path><path stroke-width="0" id="E517-MJSZ4-23A3" d="M319 -644V1155H403V-560H666V-644H319Z"></path><path stroke-width="0" id="E517-MJSZ4-23A2" d="M319 0V602H403V0H319Z"></path><path stroke-width="0" id="E517-MJSZ4-23A4" d="M0 1070V1154H347V-645H263V1070H0Z"></path><path stroke-width="0" id="E517-MJSZ4-23A6" d="M263 -560V1155H347V-644H0V-560H263Z"></path><path stroke-width="0" id="E517-MJSZ4-23A5" d="M263 0V602H347V0H263Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,3689)"><use xlink:href="#E517-MJMATHI-3B8" x="0" y="0"></use><use xlink:href="#E517-MJMAIN-3D" x="746" y="0"></use><g transform="translate(1802,0)"><use xlink:href="#E517-MJSZ1-28"></use><g transform="translate(458,0)"><use xlink:href="#E517-MJMATHI-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E517-MJMATHI-54" x="1215" y="583"></use></g><use xlink:href="#E517-MJMATHI-58" x="1915" y="0"></use><use xlink:href="#E517-MJMAIN-2B" x="2989" y="0"></use><use xlink:href="#E517-MJMATHI-3BB" x="3989" y="0"></use><use xlink:href="#E517-MJMAIN-22C5" x="4794" y="0"></use><use xlink:href="#E517-MJMATHI-4C" x="5294" y="0"></use><use xlink:href="#E517-MJSZ1-29" x="5975" y="-1"></use><g transform="translate(6433,618)"><use transform="scale(0.707)" xlink:href="#E517-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E517-MJMAIN-31" x="778" y="0"></use></g></g><g transform="translate(9240,0)"><use xlink:href="#E517-MJMATHI-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E517-MJMATHI-54" x="1215" y="583"></use></g><use xlink:href="#E517-MJMATHI-79" x="10697" y="0"></use></g><g transform="translate(0,-870)"><use xlink:href="#E517-MJMAIN-77"></use><use xlink:href="#E517-MJMAIN-68" x="722" y="0"></use><use xlink:href="#E517-MJMAIN-65" x="1278" y="0"></use><use xlink:href="#E517-MJMAIN-72" x="1722" y="0"></use><use xlink:href="#E517-MJMAIN-65" x="2114" y="0"></use><use xlink:href="#E517-MJMATHI-4C" x="3058" y="0"></use><use xlink:href="#E517-MJMAIN-3D" x="4016" y="0"></use><g transform="translate(5072,0)"><g transform="translate(0,3910)"><use xlink:href="#E517-MJSZ4-23A1" x="0" y="-1154"></use><g transform="translate(0,-5571) scale(1,6.348837209302325)"><use xlink:href="#E517-MJSZ4-23A2"></use></g><use xlink:href="#E517-MJSZ4-23A3" x="0" y="-6676"></use></g><g transform="translate(834,0)"><g transform="translate(-15,0)"><use xlink:href="#E517-MJMAIN-30" x="0" y="3110"></use></g><g transform="translate(1485,0)"><use xlink:href="#E517-MJMAIN-31" x="0" y="1710"></use></g><g transform="translate(2985,0)"><use xlink:href="#E517-MJMAIN-31" x="0" y="310"></use></g><g transform="translate(4485,0)"><use xlink:href="#E517-MJMAIN-22F1" x="0" y="-1810"></use></g><g transform="translate(6767,0)"><use xlink:href="#E517-MJMAIN-31" x="0" y="-3210"></use></g></g><g transform="translate(8268,3910)"><use xlink:href="#E517-MJSZ4-23A4" x="0" y="-1154"></use><g transform="translate(0,-5571) scale(1,6.348837209302325)"><use xlink:href="#E517-MJSZ4-23A5"></use></g><use xlink:href="#E517-MJSZ4-23A6" x="0" y="-6676"></use></g></g></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-507">\begin{align*}
& \theta = \left( X^TX + \lambda \cdot L \right)^{-1} X^Ty \\
& \text{where}\ \ L = \begin{bmatrix} 0 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1 \\ \end{bmatrix}
\end{align*}</script></div></div><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.614ex" height="1.994ex" viewBox="0 -755.9 1986.4 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E271-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E271-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E271-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E271-MJMATHI-3BB" x="0" y="0"></use><use xlink:href="#E271-MJMAIN-22C5" x="805" y="0"></use><use xlink:href="#E271-MJMATHI-4C" x="1305" y="0"></use></g></svg></span><script type="math/tex">\lambda\cdot L</script><span>: 正则化项</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.582ex" height="1.994ex" viewBox="0 -755.9 681 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E272-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E272-MJMATHI-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">L</script><span>: 第一行第一列为 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.161ex" height="1.994ex" viewBox="0 -755.9 500 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E50-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E50-MJMAIN-30" x="0" y="0"></use></g></svg></span><script type="math/tex">0</script><span> 的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.394ex" height="2.11ex" viewBox="0 -755.9 2322.4 908.7" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E106-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E106-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E106-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E106-MJMATHI-6E" x="0" y="0"></use><use xlink:href="#E106-MJMAIN-2B" x="822" y="0"></use><use xlink:href="#E106-MJMAIN-31" x="1822" y="0"></use></g></svg></span><script type="math/tex">n+1</script><span> 维单位矩阵</span></p></blockquote><p><span>Matlab/Octave 代码:</span></p><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang=""><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang=""><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 44px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 36px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>10</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -36px; width: 36px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">&gt;&gt; L = eye(5)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">&gt;&gt; L(1,1) = 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;">L =</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 0 &nbsp; &nbsp; 1 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 1 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 27px;">9</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 1 &nbsp; &nbsp; 0</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -36px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 27px;">10</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 0 &nbsp; &nbsp; 1</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 230px;"></div><div class="CodeMirror-gutters" style="height: 230px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 35px;"></div></div></div></div></pre><p>&nbsp;</p><p><span>前文提到正则化可以解决正规方程法中不可逆的问题,即增加了 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.614ex" height="1.994ex" viewBox="0 -755.9 1986.4 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E273-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E273-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E273-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E273-MJMATHI-3BB" x="0" y="0"></use><use xlink:href="#E273-MJMAIN-22C5" x="805" y="0"></use><use xlink:href="#E273-MJMATHI-4C" x="1305" y="0"></use></g></svg></span><script type="math/tex">\lambda \cdot L</script><span> 正则化项后,可以保证 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.816ex" height="2.461ex" viewBox="0 -906.7 5517.9 1059.4" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E274-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E274-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E274-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E274-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E274-MJMAIN-22C5" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250Z"></path><path stroke-width="0" id="E274-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E274-MJMATHI-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E274-MJMATHI-54" x="1215" y="513"></use><use xlink:href="#E274-MJMATHI-58" x="1457" y="0"></use><use xlink:href="#E274-MJMAIN-2B" x="2531" y="0"></use><use xlink:href="#E274-MJMATHI-3BB" x="3531" y="0"></use><use xlink:href="#E274-MJMAIN-22C5" x="4336" y="0"></use><use xlink:href="#E274-MJMATHI-4C" x="4836" y="0"></use></g></svg></span><script type="math/tex">X^TX + \lambda \cdot L</script><span> 可逆(invertible),即便 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.363ex" height="2.227ex" viewBox="0 -906.7 2309.1 958.9" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E149-MJMATHI-58" d="M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z"></path><path stroke-width="0" id="E149-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E149-MJMATHI-58" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E149-MJMATHI-54" x="1215" y="513"></use><use xlink:href="#E149-MJMATHI-58" x="1457" y="0"></use></g></svg></span><script type="math/tex">X^TX</script><span> 不可逆(non-invertible)。 </span></p><h2><a name="74-逻辑回归正则化regularized-logistic-regression" class="md-header-anchor"></a><span>7.4 逻辑回归正则化(Regularized Logistic Regression)</span></h2><p><span>为逻辑回归的代价函数添加正则化项:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n262" cid="n262" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-508-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="86.593ex" height="8.414ex" viewBox="0 -1962.1 37283.1 3622.7" role="img" focusable="false" style="vertical-align: -3.857ex; max-width: 100%;"><defs><path stroke-width="0" id="E518-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E518-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E518-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E518-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E518-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E518-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E518-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E518-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E518-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E518-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E518-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E518-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E518-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E518-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E518-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E518-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E518-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E518-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E518-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E518-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E518-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E518-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E518-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E518-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E518-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E518-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E518-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E518-MJMAIN-3D" x="2157" y="0"></use><use xlink:href="#E518-MJMAIN-2212" x="3213" y="0"></use><g transform="translate(3991,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E518-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E518-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(5396,0)"><use xlink:href="#E518-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E518-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E518-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E518-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E518-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(6840,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-5B" x="0" y="0"></use><g transform="translate(333,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-79" x="0" y="0"></use><g transform="translate(598,495)"><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(2455,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-6C"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-6F" x="278" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-67" x="778" y="0"></use></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-28" x="3324" y="0"></use><g transform="translate(4455,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-3B8" x="814" y="-218"></use></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-28" x="4720" y="0"></use><g transform="translate(6131,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-78" x="0" y="0"></use><g transform="translate(686,495)"><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-29" x="733" y="0"></use></g></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-29" x="6575" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-29" x="6964" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-2B" x="7576" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-28" x="8576" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-31" x="8965" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-2212" x="9687" y="0"></use><g transform="translate(12825,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-79" x="0" y="0"></use><g transform="translate(598,495)"><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-29" x="733" y="0"></use></g></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-29" x="12081" y="0"></use><g transform="translate(15414,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-6C"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-6F" x="278" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-67" x="778" y="0"></use></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-28" x="14123" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-31" x="14512" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-2212" x="15234" y="0"></use><g transform="translate(19481,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-3B8" x="814" y="-218"></use></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-28" x="17242" y="0"></use><g transform="translate(21157,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-78" x="0" y="0"></use><g transform="translate(686,495)"><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-29" x="733" y="0"></use></g></g><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-29" x="19097" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-29" x="19486" y="0"></use><g transform="translate(23850,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-5D" x="0" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-2B" x="278" y="0"></use><g transform="translate(1267,0)"><g transform="translate(144,0)"><rect stroke="none" width="1797" height="72" x="0" y="264"></rect><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-3BB" x="457" y="676"></use><g transform="translate(72,-824)"><use transform="scale(1.2)" xlink:href="#E518-MJMAIN-32" x="0" y="0"></use><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-6D" x="500" y="0"></use></g></g></g><g transform="translate(3552,0)"><use transform="scale(1.2)" xlink:href="#E518-MJSZ2-2211" x="0" y="0"></use><g transform="translate(149,-1306)"><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-31" x="1190" y="0"></use></g><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-6E" x="721" y="1626"></use></g><g transform="translate(5485,0)"><use transform="scale(1.2)" xlink:href="#E518-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.849)" xlink:href="#E518-MJMAIN-32" x="663" y="610"></use><use transform="scale(0.849)" xlink:href="#E518-MJMATHI-6A" x="663" y="-350"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-508">J(\theta) = - \frac{1}{m} \sum_{i=1}^m \large[ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))\large] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2</script></div></div><p><span>前文已经证明过逻辑回归和线性回归的代价函数的求导结果是一样的,此处通过给正则化项添加常数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.657ex" height="3.278ex" viewBox="0 -956.9 713.6 1411.3" role="img" focusable="false" style="vertical-align: -1.055ex;"><defs><path stroke-width="0" id="E34-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E34-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="473" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E34-MJMAIN-31" x="84" y="571"></use><use transform="scale(0.707)" xlink:href="#E34-MJMAIN-32" x="84" y="-531"></use></g></g></svg></span><script type="math/tex">\frac{1}{2}</script><span>,则其求导结果也就一样了。</span></p><p><span>从而有应用正则化的逻辑回归梯度下降算法:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n265" cid="n265" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-509-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="72.2ex" height="20.788ex" viewBox="0 -4726.4 31085.9 8950.1" role="img" focusable="false" style="vertical-align: -9.81ex; max-width: 100%;"><defs><path stroke-width="0" id="E519-MJMAIN-52" d="M130 622Q123 629 119 631T103 634T60 637H27V683H202H236H300Q376 683 417 677T500 648Q595 600 609 517Q610 512 610 501Q610 468 594 439T556 392T511 361T472 343L456 338Q459 335 467 332Q497 316 516 298T545 254T559 211T568 155T578 94Q588 46 602 31T640 16H645Q660 16 674 32T692 87Q692 98 696 101T712 105T728 103T732 90Q732 59 716 27T672 -16Q656 -22 630 -22Q481 -16 458 90Q456 101 456 163T449 246Q430 304 373 320L363 322L297 323H231V192L232 61Q238 51 249 49T301 46H334V0H323Q302 3 181 3Q59 3 38 0H27V46H60Q102 47 111 49T130 61V622ZM491 499V509Q491 527 490 539T481 570T462 601T424 623T362 636Q360 636 340 636T304 637H283Q238 637 234 628Q231 624 231 492V360H289Q390 360 434 378T489 456Q491 467 491 499Z"></path><path stroke-width="0" id="E519-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E519-MJMAIN-70" d="M36 -148H50Q89 -148 97 -134V-126Q97 -119 97 -107T97 -77T98 -38T98 6T98 55T98 106Q98 140 98 177T98 243T98 296T97 335T97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 61 434T98 436Q115 437 135 438T165 441T176 442H179V416L180 390L188 397Q247 441 326 441Q407 441 464 377T522 216Q522 115 457 52T310 -11Q242 -11 190 33L182 40V-45V-101Q182 -128 184 -134T195 -145Q216 -148 244 -148H260V-194H252L228 -193Q205 -192 178 -192T140 -191Q37 -191 28 -194H20V-148H36ZM424 218Q424 292 390 347T305 402Q234 402 182 337V98Q222 26 294 26Q345 26 384 80T424 218Z"></path><path stroke-width="0" id="E519-MJMAIN-61" d="M137 305T115 305T78 320T63 359Q63 394 97 421T218 448Q291 448 336 416T396 340Q401 326 401 309T402 194V124Q402 76 407 58T428 40Q443 40 448 56T453 109V145H493V106Q492 66 490 59Q481 29 455 12T400 -6T353 12T329 54V58L327 55Q325 52 322 49T314 40T302 29T287 17T269 6T247 -2T221 -8T190 -11Q130 -11 82 20T34 107Q34 128 41 147T68 188T116 225T194 253T304 268H318V290Q318 324 312 340Q290 411 215 411Q197 411 181 410T156 406T148 403Q170 388 170 359Q170 334 154 320ZM126 106Q126 75 150 51T209 26Q247 26 276 49T315 109Q317 116 318 175Q318 233 317 233Q309 233 296 232T251 223T193 203T147 166T126 106Z"></path><path stroke-width="0" id="E519-MJMAIN-74" d="M27 422Q80 426 109 478T141 600V615H181V431H316V385H181V241Q182 116 182 100T189 68Q203 29 238 29Q282 29 292 100Q293 108 293 146V181H333V146V134Q333 57 291 17Q264 -10 221 -10Q187 -10 162 2T124 33T105 68T98 100Q97 107 97 248V385H18V422H27Z"></path><path stroke-width="0" id="E519-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E519-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E519-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E519-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E519-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E519-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E519-MJMATHI-3B1" d="M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z"></path><path stroke-width="0" id="E519-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E519-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E519-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E519-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E519-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E519-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E519-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E519-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E519-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E519-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E519-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E519-MJSZ4-28" d="M758 -1237T758 -1240T752 -1249H736Q718 -1249 717 -1248Q711 -1245 672 -1199Q237 -706 237 251T672 1700Q697 1730 716 1749Q718 1750 735 1750H752Q758 1744 758 1741Q758 1737 740 1713T689 1644T619 1537T540 1380T463 1176Q348 802 348 251Q348 -242 441 -599T744 -1218Q758 -1237 758 -1240Z"></path><path stroke-width="0" id="E519-MJSZ4-29" d="M33 1741Q33 1750 51 1750H60H65Q73 1750 81 1743T119 1700Q554 1207 554 251Q554 -707 119 -1199Q76 -1250 66 -1250Q65 -1250 62 -1250T56 -1249Q55 -1249 53 -1249T49 -1250Q33 -1250 33 -1239Q33 -1236 50 -1214T98 -1150T163 -1052T238 -910T311 -727Q443 -335 443 251Q443 402 436 532T405 831T339 1142T224 1438T50 1716Q33 1737 33 1741Z"></path><path stroke-width="0" id="E519-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E519-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E519-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E519-MJSZ4-5B" d="M269 -1249V1750H577V1677H342V-1176H577V-1249H269Z"></path><path stroke-width="0" id="E519-MJSZ4-5D" d="M5 1677V1750H313V-1249H5V-1176H240V1677H5Z"></path><path stroke-width="0" id="E519-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E519-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E519-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E519-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E519-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E519-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,3829)"><use xlink:href="#E519-MJMAIN-52"></use><use xlink:href="#E519-MJMAIN-65" x="736" y="0"></use><use xlink:href="#E519-MJMAIN-70" x="1180" y="0"></use><use xlink:href="#E519-MJMAIN-65" x="1736" y="0"></use><use xlink:href="#E519-MJMAIN-61" x="2180" y="0"></use><use xlink:href="#E519-MJMAIN-74" x="2680" y="0"></use><use xlink:href="#E519-MJMAIN-7B" x="3319" y="0"></use></g><g transform="translate(0,1716)"><g transform="translate(1000,0)"><use xlink:href="#E519-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-30" x="663" y="-213"></use></g><g transform="translate(2200,0)"><use xlink:href="#E519-MJMAIN-3A"></use><use xlink:href="#E519-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3534,0)"><use xlink:href="#E519-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-30" x="663" y="-213"></use></g><use xlink:href="#E519-MJMAIN-2212" x="4678" y="0"></use><use xlink:href="#E519-MJMATHI-3B1" x="5679" y="0"></use><g transform="translate(6569,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E519-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E519-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(8223,0)"><use xlink:href="#E519-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E519-MJMAIN-28" x="9667" y="0"></use><g transform="translate(10056,0)"><use xlink:href="#E519-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E519-MJMAIN-28" x="11064" y="0"></use><g transform="translate(11453,0)"><use xlink:href="#E519-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E519-MJMAIN-29" x="12919" y="0"></use><use xlink:href="#E519-MJMAIN-2212" x="13530" y="0"></use><g transform="translate(14530,0)"><use xlink:href="#E519-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E519-MJMAIN-29" x="15924" y="0"></use><g transform="translate(16313,0)"><use xlink:href="#E519-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-30" x="808" y="-434"></use></g></g><g transform="translate(0,-1530)"><g transform="translate(1000,0)"><use xlink:href="#E519-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6A" x="663" y="-213"></use></g><g transform="translate(2138,0)"><use xlink:href="#E519-MJMAIN-3A"></use><use xlink:href="#E519-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3471,0)"><use xlink:href="#E519-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E519-MJMAIN-2212" x="4554" y="0"></use><use xlink:href="#E519-MJMATHI-3B1" x="5554" y="0"></use><g transform="translate(6611,0)"><use xlink:href="#E519-MJSZ4-5B"></use><g transform="translate(583,0)"><use xlink:href="#E519-MJSZ4-28"></use><g transform="translate(792,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E519-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E519-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(2446,0)"><use xlink:href="#E519-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6D" x="582" y="1626"></use></g><use xlink:href="#E519-MJMAIN-28" x="3890" y="0"></use><g transform="translate(4279,0)"><use xlink:href="#E519-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E519-MJMAIN-28" x="5287" y="0"></use><g transform="translate(5676,0)"><use xlink:href="#E519-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E519-MJMAIN-29" x="7142" y="0"></use><use xlink:href="#E519-MJMAIN-2212" x="7753" y="0"></use><g transform="translate(8753,0)"><use xlink:href="#E519-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E519-MJMAIN-29" x="10147" y="0"></use><g transform="translate(10536,0)"><use xlink:href="#E519-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,521)"><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6A" x="808" y="-429"></use></g><use xlink:href="#E519-MJSZ4-29" x="12002" y="0"></use></g><use xlink:href="#E519-MJMAIN-2B" x="13599" y="0"></use><g transform="translate(14377,0)"><g transform="translate(342,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E519-MJMATHI-3BB" x="207" y="676"></use><use xlink:href="#E519-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(15837,0)"><use xlink:href="#E519-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E519-MJMATHI-6A" x="663" y="-213"></use></g><use xlink:href="#E519-MJSZ4-5D" x="16697" y="-1"></use></g><use xlink:href="#E519-MJMAIN-2C" x="24058" y="0"></use><use xlink:href="#E519-MJMATHI-6A" x="25253" y="0"></use><use xlink:href="#E519-MJMAIN-2208" x="25943" y="0"></use><use xlink:href="#E519-MJMAIN-7B" x="26888" y="0"></use><use xlink:href="#E519-MJMAIN-31" x="27388" y="0"></use><use xlink:href="#E519-MJMAIN-2C" x="27888" y="0"></use><g transform="translate(28332,0)"><use xlink:href="#E519-MJMAIN-32"></use><use xlink:href="#E519-MJMAIN-2E" x="500" y="0"></use><use xlink:href="#E519-MJMAIN-2E" x="778" y="0"></use><use xlink:href="#E519-MJMAIN-2E" x="1056" y="0"></use></g><use xlink:href="#E519-MJMATHI-6E" x="29666" y="0"></use><use xlink:href="#E519-MJMAIN-7D" x="30266" y="0"></use></g><g transform="translate(0,-3880)"><use xlink:href="#E519-MJMAIN-7D" x="0" y="0"></use></g></g></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-509">\begin{align*}
& \text{Repeat}\ \lbrace \\
& \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \\
& \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{m}\theta_j \right], \ \ \ j \in \lbrace 1,2...n\rbrace\\
& \rbrace \end{align*}</script></div></div><div class='footnotes-area' ><hr/>
<div class='footnote-line'><span class='md-fn-count'>1</span> <a href='https://en.wikipedia.org/wiki/List_of_algorithms#Optimization_algorithms' target='_blank' class='url'>https://en.wikipedia.org/wiki/List_of_algorithms#Optimization_algorithms</a> <a name='dfref-footnote-1' href='#ref-footnote-1' title='回到文档' class='reversefootnote' >↩</a></div>
<div class='footnote-line'><span class='md-fn-count'>2</span> <span>week2 - 4.6</span> <a name='dfref-footnote-2' href='#ref-footnote-2' title='回到文档' class='reversefootnote' >↩</a></div></div></div>
</body>
</html>
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/tixuan/ML-AndrewNg-Notes.git
git@gitee.com:tixuan/ML-AndrewNg-Notes.git
tixuan
ML-AndrewNg-Notes
ML-AndrewNg-Notes
master

搜索帮助