1 Star 0 Fork 0

铁西/siamese-lstm-sick-dataset

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
input_handler.py 11.63 KB
一键复制 编辑 原始数据 按行查看 历史
Lancasterg 提交于 2018-08-21 11:49 . rename files
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from gensim.models import Word2Vec
from config import EMBEDDING_DIM
import numpy as np
import pickle
import gc
from numpy import array
import numpy as np
# constants for test / train / trial data
TEST = 'TEST'
TRAIN = 'TRAIN'
TRIAL = 'TRIAL'
# constants for min and max relatedness
MIN = 1
MAX = 5
# constants for entailment
ENTAILMENT = 'ENTAILMENT'
NEUTRAL = 'NEUTRAL'
CONTRADICTION = 'CONTRADICTION'
def load_SICK():
'''
loads the SICK data set as a tuple.
Returns:
train_data (tuple): tuple of the training data sentences and their labels
test_data (tuple): tuple of the test data sentences and their labels
trial_data (tuple): tuple of the trial data sentences and their labels
'''
f = open('SICK.txt', 'r') # open the file for reading
train_data = []
test_data = []
trial_data = []
data = []
for row_num, line in enumerate(f):
values = line.strip().split('\t')
if row_num == 0: # first line is the header
header = values
else:
data.append([v for v in values])
sick = array(data)
f.close() # close the file
for row in sick:
if row[11] == TEST:
test_data.append(row)
elif row[11] == TRAIN:
train_data.append(row)
elif row[11] == TRIAL:
train_data.append(row)
return(train_data, test_data, trial_data)
def load_sick_entailment(mode=TRAIN):
"""
load one of the data sets from the SICK data set.
Uses entailment to train and test
Args:
mode (string): TEST or TRAIN to load the training or testing set
Returns:
sentences1 (list): First set of senteces
sentences2 (list): Second set of sentences
entailment (list): Entailment labels
"""
train_data, test_data, trial_data = load_SICK()
sentences1 = []
sentences2 = []
entailment = []
if mode == TRAIN:
for x in range(0, len(train_data)):
sentences1.append(train_data[x][1])
sentences2.append(train_data[x][2])
if train_data[x][3] == CONTRADICTION:
entailment.append(0)
elif train_data[x][3] == NEUTRAL:
entailment.append(1)
elif train_data[x][3] == ENTAILMENT:
entailment.append(2)
elif mode==TEST:
for x in range(0, len(test_data)):
sentences1.append(test_data[x][1])
sentences2.append(test_data[x][2])
if test_data[x][3] == CONTRADICTION:
entailment.append(0)
elif test_data[x][3] == NEUTRAL:
entailment.append(1)
elif test_data[x][3] == ENTAILMENT:
entailment.append(2)
return sentences1, sentences2, entailment
def extend_train_set(sentences1, sentences2, is_similar, test_sentences1, test_sentences2, test_labels):
"""
Increase the size of the training set by adding the first half of the testing
set to the training set
Args:
sentences1 (list): first list of training sentences
sentences2 (list): second list of training sentences
is_similar (list): list of training labels
test_sentences1 (list): first list of testing sentences
test_sentences2 (list): second list of testing sentences
test_labels (list): list of testing labels
Returns:
sentences1 (list): extended list of training sentences
sentences2 (list): extended list of training sentences
is_similar (list): extended list of training labels
test_sentences1 (list): shortened list of testing sentences
test_sentences2 (list): shortened list of testing sentences
test_labels (list): shortened list of testing labels
"""
sentences1 += test_sentences1[len(test_sentences1)/2:]
sentences2 += test_sentences2[len(test_sentences2)/2:]
is_similar += test_labels[len(test_labels)/2:]
test_sentences1 = test_sentences1[:len(test_sentences1)/2]
test_sentences2 = test_sentences2[:len(test_sentences2)/2]
test_labels = test_labels[:len(test_labels)/2]
return sentences1, sentences2, is_similar, test_sentences1, test_sentences2, test_labels
def plot_model_d(history):
"""
Plot two training graphs showing the val_loss and val_acc
Args:
history: The training history
"""
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
def one_hot(a):
""" Create a one-hot from a predicion
Args:
a (list): a list of predictions
"""
b = np.zeros_like(a)
b[np.where(a == np.max(a))] = 1
return b
def train_word2vec(documents, embedding_dim):
"""
train word2vector over traning documents
Args:
documents (list): list of document
min_count (int): min count of word in documents to consider for word vector creation
embedding_dim (int): output wordvector size
Returns:
word_vectors(dict): dict containing words and their respective vectors
"""
'''
model = Word2Vec(documents, min_count=1, size=embedding_dim)
word_vector = model.wv
del model
'''
# Split the sentences into lists of words
docs = [string.lower().split() for string in documents]
#Vectorize all words in docs
model = Word2Vec(docs, min_count=1, size=EMBEDDING_DIM)
word_vector = model.wv
return word_vector
def create_embedding_matrix(tokenizer, word_vectors, embedding_dim):
"""
Create embedding matrix containing word indexes and respective vectors from word vectors
Args:
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object containing word indexes
word_vectors (dict): dict containing word and their respective vectors
embedding_dim (int): dimention of word vector
Returns:
"""
nb_words = len(tokenizer.word_index) + 1
word_index = tokenizer.word_index
embedding_matrix = np.zeros((nb_words, embedding_dim))
print("Embedding matrix shape: %s" % str(embedding_matrix.shape))
for word, i in word_index.items():
embedding_vector = word_vectors[word]
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
print('Null word embeddings: %d' % np.sum(np.sum(embedding_matrix, axis=1) == 0))
return embedding_matrix
####### FIRST #######
def word_embed_meta_data(documents, embedding_dim):
"""
Load tokenizer object for given vocabs list.
Creates a tokenizer,
Args:
documents (list): list of document
Returns:
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
embedding_matrix (dict): dict with word_index and vector mapping
"""
documents = [string.lower() for string in documents]
tokenizer = Tokenizer(filters='!".#$%&()*+,/:;<=>?@[\\]^_`{|}~\t\n')
documents = remove_punct(documents)
tokenizer.fit_on_texts(documents)
word_vector = train_word2vec(documents, embedding_dim)
embedding_matrix = create_embedding_matrix(tokenizer, word_vector, embedding_dim)
del word_vector
gc.collect()
return tokenizer, embedding_matrix
def create_train_dev_set(tokenizer, sentences_pair, is_similar, max_sequence_length, validation_split_ratio):
"""
Create training and validation dataset
Args:
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
sentences_pair (list): list of tuple of sentences pairs
is_similar (list): list containing labels if respective sentences in sentence1 and sentence2
are same or not (1 if same else 0)
max_sequence_length (int): max sequence length of sentences to apply padding
validation_split_ratio (float): contain ratio to split training data into validation data
Returns:
train_data_1 (list): list of input features for training set from sentences1
train_data_2 (list): list of input features for training set from sentences2
labels_train (np.array): array containing similarity score for training data
leaks_train(np.array): array of training leaks features
val_data_1 (list): list of input features for validation set from sentences1
val_data_2 (list): list of input features for validation set from sentences1
labels_val (np.array): array containing similarity score for validation data
leaks_val (np.array): array of validation leaks features
"""
sentences1 = [x[0] for x in sentences_pair]
sentences2 = [x[1] for x in sentences_pair]
train_sequences_1 = tokenizer.texts_to_sequences(sentences1)
train_sequences_2 = tokenizer.texts_to_sequences(sentences2)
leaks = [[len(set(x1)), len(set(x2)), len(set(x1).intersection(x2))]
for x1, x2 in zip(train_sequences_1, train_sequences_2)]
train_padded_data_1 = pad_sequences(train_sequences_1, maxlen=max_sequence_length)
train_padded_data_2 = pad_sequences(train_sequences_2, maxlen=max_sequence_length)
train_labels = np.array(is_similar)
leaks = np.array(leaks)
shuffle_indices = np.random.permutation(np.arange(len(train_labels)))
train_data_1_shuffled = train_padded_data_1[shuffle_indices]
train_data_2_shuffled = train_padded_data_2[shuffle_indices]
train_labels_shuffled = train_labels[shuffle_indices]
leaks_shuffled = leaks[shuffle_indices]
dev_idx = max(1, int(len(train_labels_shuffled) * validation_split_ratio))
del train_padded_data_1
del train_padded_data_2
gc.collect()
train_data_1, val_data_1 = train_data_1_shuffled[:-dev_idx], train_data_1_shuffled[-dev_idx:]
train_data_2, val_data_2 = train_data_2_shuffled[:-dev_idx], train_data_2_shuffled[-dev_idx:]
labels_train, labels_val = train_labels_shuffled[:-dev_idx], train_labels_shuffled[-dev_idx:]
leaks_train, leaks_val = leaks_shuffled[:-dev_idx], leaks_shuffled[-dev_idx:]
return train_data_1, train_data_2, labels_train, leaks_train, val_data_1, val_data_2, labels_val, leaks_val
def create_test_data(tokenizer, test_sentences_pair, max_sequence_length):
"""
Create training and validation dataset
Args:
tokenizer (keras.preprocessing.text.Tokenizer): keras tokenizer object
test_sentences_pair (list): list of tuple of sentences pairs
max_sequence_length (int): max sequence length of sentences to apply padding
Returns:
test_data_1 (list): list of input features for training set from sentences1
test_data_2 (list): list of input features for training set from sentences2
"""
test_sentences1 = [x[0] for x in test_sentences_pair]
test_sentences2 = [x[1] for x in test_sentences_pair]
test_sequences_1 = tokenizer.texts_to_sequences(test_sentences1)
test_sequences_2 = tokenizer.texts_to_sequences(test_sentences2)
leaks_test = [[len(set(x1)), len(set(x2)), len(set(x1).intersection(x2))]
for x1, x2 in zip(test_sequences_1, test_sequences_2)]
leaks_test = np.array(leaks_test)
test_data_1 = pad_sequences(test_sequences_1, maxlen=max_sequence_length)
test_data_2 = pad_sequences(test_sequences_2, maxlen=max_sequence_length)
return test_data_1, test_data_2, leaks_test
def remove_punct(docs):
for x in range(0, len(docs)):
docs[x] = docs[x].replace(',','')
return docs
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/tiexi/siamese-lstm-sick-dataset.git
git@gitee.com:tiexi/siamese-lstm-sick-dataset.git
tiexi
siamese-lstm-sick-dataset
siamese-lstm-sick-dataset
master

搜索帮助