代码拉取完成,页面将自动刷新
from transformers import AutoTokenizer
from optimum.intel import OVWeightQuantizationConfig
from optimum.intel.openvino import OVModelForCausalLM
import os
from pathlib import Path
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-h',
'--help',
action='help',
help='Show this help message and exit.')
parser.add_argument('-m',
'--model_id',
default='Qwen/Qwen1.5-0.5B-Chat',
required=False,
type=str,
help='orignal model path')
parser.add_argument('-p',
'--precision',
required=False,
default="int4",
type=str,
choices=["fp16", "int8", "int4"],
help='fp16, int8 or int4')
parser.add_argument('-o',
'--output',
required=False,
type=str,
help='path to save the ir model')
parser.add_argument('-ms',
'--modelscope',
action='store_true',
help='download model from Model Scope')
args = parser.parse_args()
ir_model_path = Path(args.model_id.split(
"/")[1] + '-ov') if args.output is None else Path(args.output)
if ir_model_path.exists() == False:
os.mkdir(ir_model_path)
compression_configs = {
"sym": False,
"group_size": 128,
"ratio": 0.8,
}
if args.modelscope:
from modelscope import snapshot_download
print("====Downloading model from ModelScope=====")
model_path = snapshot_download(args.model_id, cache_dir='./')
else:
model_path = args.model_id
print("====Exporting IR=====")
if args.precision == "int4":
ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True,
compile=False, quantization_config=OVWeightQuantizationConfig(
bits=4, **compression_configs))
elif args.precision == "int8":
ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True,
compile=False, load_in_8bit=True)
else:
ov_model = OVModelForCausalLM.from_pretrained(model_path, export=True,
compile=False, load_in_8bit=False)
ov_model.save_pretrained(ir_model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_path)
tokenizer.save_pretrained(ir_model_path)
print("====Exporting IR tokenizer=====")
from optimum.exporters.openvino.convert import export_tokenizer
export_tokenizer(tokenizer, ir_model_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。