代码拉取完成,页面将自动刷新
同步操作将从 homer_1943/ReHiFace-S 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import cv2
import numexpr as ne
import numpy as np
import scipy as sp
from numpy import linalg as npla
def color_transfer_sot(src,trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0):
"""
Color Transform via Sliced Optimal Transfer
ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer
src - any float range any channel image
dst - any float range any channel image, same shape as src
steps - number of solver steps
batch_size - solver batch size
reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0
reg_sigmaV - sigmaV of filter
return value - clip it manually
"""
if not np.issubdtype(src.dtype, np.floating):
raise ValueError("src value must be float")
if not np.issubdtype(trg.dtype, np.floating):
raise ValueError("trg value must be float")
if len(src.shape) != 3:
raise ValueError("src shape must have rank 3 (h,w,c)")
if src.shape != trg.shape:
raise ValueError("src and trg shapes must be equal")
src_dtype = src.dtype
h,w,c = src.shape
new_src = src.copy()
advect = np.empty ( (h*w,c), dtype=src_dtype )
for step in range (steps):
advect.fill(0)
for batch in range (batch_size):
dir = np.random.normal(size=c).astype(src_dtype)
dir /= npla.norm(dir)
projsource = np.sum( new_src*dir, axis=-1).reshape ((h*w))
projtarget = np.sum( trg*dir, axis=-1).reshape ((h*w))
idSource = np.argsort (projsource)
idTarget = np.argsort (projtarget)
a = projtarget[idTarget]-projsource[idSource]
for i_c in range(c):
advect[idSource,i_c] += a * dir[i_c]
new_src += advect.reshape( (h,w,c) ) / batch_size
if reg_sigmaXY != 0.0:
src_diff = new_src-src
src_diff_filt = cv2.bilateralFilter (src_diff, 0, reg_sigmaV, reg_sigmaXY )
if len(src_diff_filt.shape) == 2:
src_diff_filt = src_diff_filt[...,None]
new_src = src + src_diff_filt
return new_src
def color_transfer_mkl(x0, x1):
eps = np.finfo(float).eps
h,w,c = x0.shape
h1,w1,c1 = x1.shape
x0 = x0.reshape ( (h*w,c) )
x1 = x1.reshape ( (h1*w1,c1) )
a = np.cov(x0.T)
b = np.cov(x1.T)
Da2, Ua = np.linalg.eig(a)
Da = np.diag(np.sqrt(Da2.clip(eps, None)))
C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da)
Dc2, Uc = np.linalg.eig(C)
Dc = np.diag(np.sqrt(Dc2.clip(eps, None)))
Da_inv = np.diag(1./(np.diag(Da)))
t = np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T)
mx0 = np.mean(x0, axis=0)
mx1 = np.mean(x1, axis=0)
result = np.dot(x0-mx0, t) + mx1
return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1)
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
import scipy.stats
relaxation = 1 / n_rot
h,w,c = i0.shape
h1,w1,c1 = i1.shape
i0 = i0.reshape ( (h*w,c) )
i1 = i1.reshape ( (h1*w1,c1) )
n_dims = c
d0 = i0.T
d1 = i1.T
for i in range(n_rot):
r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32)
d0r = np.dot(r, d0)
d1r = np.dot(r, d1)
d_r = np.empty_like(d0)
for j in range(n_dims):
lo = min(d0r[j].min(), d1r[j].min())
hi = max(d0r[j].max(), d1r[j].max())
p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi])
p1r, _ = np.histogram(d1r[j], bins=bins, range=[lo, hi])
cp0r = p0r.cumsum().astype(np.float32)
cp0r /= cp0r[-1]
cp1r = p1r.cumsum().astype(np.float32)
cp1r /= cp1r[-1]
f = np.interp(cp0r, cp1r, edges[1:])
d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins)
d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0
return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1)
def reinhard_color_transfer(target : np.ndarray, source : np.ndarray, target_mask : np.ndarray = None, source_mask : np.ndarray = None, mask_cutoff=0.5) -> np.ndarray:
"""
Transfer color using rct method.
target np.ndarray H W 3C (BGR) np.float32
source np.ndarray H W 3C (BGR) np.float32
target_mask(None) np.ndarray H W 1C np.float32
source_mask(None) np.ndarray H W 1C np.float32
mask_cutoff(0.5) float
masks are used to limit the space where color statistics will be computed to adjust the target
reference: Color Transfer between Images https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
"""
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
source_input = source
if source_mask is not None:
source_input = source_input.copy()
source_input[source_mask[...,0] < mask_cutoff] = [0,0,0]
target_input = target
if target_mask is not None:
target_input = target_input.copy()
target_input[target_mask[...,0] < mask_cutoff] = [0,0,0]
target_l_mean, target_l_std, target_a_mean, target_a_std, target_b_mean, target_b_std, \
= target_input[...,0].mean(), target_input[...,0].std(), target_input[...,1].mean(), target_input[...,1].std(), target_input[...,2].mean(), target_input[...,2].std()
source_l_mean, source_l_std, source_a_mean, source_a_std, source_b_mean, source_b_std, \
= source_input[...,0].mean(), source_input[...,0].std(), source_input[...,1].mean(), source_input[...,1].std(), source_input[...,2].mean(), source_input[...,2].std()
# not as in the paper: scale by the standard deviations using reciprocal of paper proposed factor
target_l = target[...,0]
target_l = ne.evaluate('(target_l - target_l_mean) * source_l_std / target_l_std + source_l_mean')
target_a = target[...,1]
target_a = ne.evaluate('(target_a - target_a_mean) * source_a_std / target_a_std + source_a_mean')
target_b = target[...,2]
target_b = ne.evaluate('(target_b - target_b_mean) * source_b_std / target_b_std + source_b_mean')
np.clip(target_l, 0, 100, out=target_l)
np.clip(target_a, -127, 127, out=target_a)
np.clip(target_b, -127, 127, out=target_b)
return cv2.cvtColor(np.stack([target_l,target_a,target_b], -1), cv2.COLOR_LAB2BGR)
def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5):
'''
Matches the colour distribution of the target image to that of the source image
using a linear transform.
Images are expected to be of form (w,h,c) and float in [0,1].
Modes are chol, pca or sym for different choices of basis.
'''
mu_t = target_img.mean(0).mean(0)
t = target_img - mu_t
t = t.transpose(2,0,1).reshape( t.shape[-1],-1)
t = t.reshape( t.shape[-1],-1)
Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0])
mu_s = source_img.mean(0).mean(0)
s = source_img - mu_s
s = s.transpose(2,0,1).reshape( s.shape[-1],-1)
Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0])
if mode == 'chol':
chol_t = np.linalg.cholesky(Ct)
chol_s = np.linalg.cholesky(Cs)
ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
if mode == 'pca':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
eva_s, eve_s = np.linalg.eigh(Cs)
Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
if mode == 'sym':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0)
matched_img += mu_s
matched_img[matched_img>1] = 1
matched_img[matched_img<0] = 0
return np.clip(matched_img.astype(source_img.dtype), 0, 1)
def lab_image_stats(image):
# compute the mean and standard deviation of each channel
(l, a, b) = cv2.split(image)
(lMean, lStd) = (l.mean(), l.std())
(aMean, aStd) = (a.mean(), a.std())
(bMean, bStd) = (b.mean(), b.std())
# return the color statistics
return (lMean, lStd, aMean, aStd, bMean, bStd)
def _scale_array(arr, clip=True):
if clip:
return np.clip(arr, 0, 255)
mn = arr.min()
mx = arr.max()
scale_range = (max([mn, 0]), min([mx, 255]))
if mn < scale_range[0] or mx > scale_range[1]:
return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0]
return arr
def channel_hist_match(source, template, hist_match_threshold=255, mask=None):
# Code borrowed from:
# https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
masked_source = source
masked_template = template
if mask is not None:
masked_source = source * mask
masked_template = template * mask
oldshape = source.shape
source = source.ravel()
template = template.ravel()
masked_source = masked_source.ravel()
masked_template = masked_template.ravel()
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles = 255 * t_quantiles / t_quantiles[-1]
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
return interp_t_values[bin_idx].reshape(oldshape)
def color_hist_match(src_im, tar_im, hist_match_threshold=255):
h,w,c = src_im.shape
matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], hist_match_threshold, None)
matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], hist_match_threshold, None)
matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], hist_match_threshold, None)
to_stack = (matched_R, matched_G, matched_B)
for i in range(3, c):
to_stack += ( src_im[:,:,i],)
matched = np.stack(to_stack, axis=-1).astype(src_im.dtype)
return matched
def color_transfer_mix(img_src,img_trg):
img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)
rct_light = np.clip ( linear_color_transfer(img_src_lab[...,0:1].astype(np.float32)/255.0,
img_trg_lab[...,0:1].astype(np.float32)/255.0 )[...,0]*255.0,
0, 255).astype(np.uint8)
img_src_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR)
img_trg_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR)
img_rct = color_transfer_sot( img_src_lab.astype(np.float32), img_trg_lab.astype(np.float32) )
img_rct = np.clip(img_rct, 0, 255).astype(np.uint8)
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB)
img_rct[...,0] = rct_light
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR)
return (img_rct / 255.0).astype(np.float32)
def color_transfer(ct_mode, img_src, img_trg):
"""
color transfer for [0,1] float32 inputs
"""
if ct_mode == 'lct':
out = linear_color_transfer(img_src, img_trg)
elif ct_mode == 'rct':
out = reinhard_color_transfer(img_src, img_trg)
elif ct_mode == 'mkl':
out = color_transfer_mkl(img_src, img_trg)
elif ct_mode == 'idt':
out = color_transfer_idt(img_src, img_trg)
elif ct_mode == 'sot':
out = color_transfer_sot(img_src, img_trg)
out = np.clip( out, 0.0, 1.0)
else:
raise ValueError(f"unknown ct_mode {ct_mode}")
return out
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。